CONSENSYS

Diligence

Ox v3 Staking Audit

1T Summary Date October 2019
2 Audit Scope

3 System Overview

Lead Auditor Steve Marx

. Co-auditors Alex Wade
4 Risk Assessment

o Issues
o 5.1 Anyone can remove a maker's pending pool join status v Fixed

o 5.2 Delegated stake weight reduction can be bypassed by using an external
contract Won't Fix

o 5.3 MixinParams.setParams bypasses safety checks made by standard
StakingProxy upgrade path. Medium v Fixed

o 5.4 Authorized addresses can indefinitely stall ZrxvVaultBackstop catastrophic
failure mode Medium v Fixed

o 5.5 Pool 0 can be used to temporarily prevent makers from joining another pool
Medium v Fixed

o 5.6 Recommendation: Fix weak assertions in MixinStakingPool stemming from
use of NIL_POOL_ID Medium v Fixed
o 5.7 LibFixedMath functions fail to catch a number of overflows Medium
v Fixed
o 5.8 Recommendation: Remove MixinAbstract and fold
MixinStakingPoolRewards into MixinFinalizer and MixinStake
Won't Fix
o 5.9 Recommendation: remove confusing access to activePoolsThisEpoch
v Fixed

5.10 Recommendation: remove

(o}

MixinFinalizer._getUnfinalizedPoolRewardsFromState Won't Fix

o

5.11 Recommendation: remove complicating getters from
MixinStakingPoolRewards Won't Fix

5.12 Recommendation: remove unneeded dependency on MixinStakeBalances
Won't Fix

(¢]

5.13 Misleading MoveStake event when moving stake from UNDELEGATED to
UNDELEGATED v Fixed

(0]

5.14 The staking contracts contain several artifacts of a quickly-changing
codebase v Fixed

o

5.15 Remove unneeded fields from StoredBalance and Pool structs

o

v Fixed
o 5.16 Remove unnecessary fallback function in Staking contract v Fixed
o 5.17 Pool IDs can just be incrementing integers v Fixed
o 518 LibProxy.proxyCall() may overwrite important memory v Fixed

e 6 Tool-Based Analysis
o 6.1 MythX

o 6.2 Surya

e Appendix 1 - Disclosure

1 Summary

ConsenSys Diligence conducted a security audit on the Ox staking contracts. These
contracts control the distribution of fees collected by the Ox Exchange to ZRX stakers.

The 0x v3 Exchange audit is good background reading to understand this report.

2 Audit Scope

The scope of this audit was the staking project within the Ox monorepo.

This audit covered the following files from commit b8e01d7 of the OxProject/0x-monorepo:

File Name SHA-1 Hash
ReadOnlyProxy.sol 6ec64526446ebff87ec5528ee3b2786338cc4fal
Staking.sol 67ddcb9ab75e433882e28d9186815990b7084c61
StakingProxy.sol 248f562d014d0b1cabde3212966af3e52a7deef
ZrxVault.sol 6c3249314868a2f5d0984122e8ab1413a5b521¢c9

fees/MixinExchangeFees.sol 9ac3b696baa8ba09305¢fc83d3c08f17d9d528e1

http://localhost:1313/audits/private/rayyta2k-0x-v3-exchange/
https://github.com/0xProject/0x-monorepo/commit/b8e01d7be535196a3145a431291183ecfbb333c6

File Name
fees/MixinExchangeManager.sol
immutable/MixinConstants.sol
immutable/MixinDeploymentConstants.sol
immutable/MixinStorage.sol
interfaces/IStaking.sol
interfaces/IStakingEvents.sol
interfaces/IStakingProxy.sol
interfaces/IStorage.sol
interfaces/IStoragelnit.sol
interfaces/IStructs.sol
interfaces/IZrxVault.sol
libs/LibCobbDouglas.sol
libs/LibFixedMath.sol
libs/LibFixedMathRichErrors.sol
libs/LibProxy.sol
libs/LibSafeDowncast.sol
libs/LibStakingRichErrors.sol
stake/MixinStake.sol
stake/MixinStakeBalances.sol
stake/MixinStakeStorage.sol
staking_pools/MixinCumulativeRewards.sol
staking_pools/MixinStakingPool.sol
staking_pools/MixinStakingPoolRewards.sol
sys/MixinAbstract.sol
sys/MixinFinalizer.sol
sys/MixinParams.sol

sys/MixinScheduler.sol

SHA-1 Hash
46f48136a49919cdb5588dc1b3d64c977¢3367f2
97c2ac83ef97a09cfd485chb0d4b119ba0902cc79
424f22c45df8e494c4a78f239ea07ff0400d694b
8ad475b0e424e7a3ff65eedf2e999¢cha98f414c8
ec1d7f214e3fd40e14716de412deee9769359bc0
25f16b814c4dfod2002316831¢3f727d858456c4
02e35c6b51e08235b2a01d30a8082d60d9d61bee
eeaa’/98c262b46d1874e904cf7de0423d4132cee
b9899b03e474eabadc3b4818a4357f71b8d288d4
fee17d036883d641afb1222b75eec8427f3cdb96
9067154651675317e000cfa92de9741e50c1¢809
242d62d71cf8bc09177d240c0db59b83f9bb4e96
36311e7be09a947fad4eb6cd8c544cacd13d65833¢c
39¢cb3e07bbce3272bbf090e87002d5834d288ec2
29abe52857a782c8da39b053cc54e02e295¢cT1ae?2
ae16ed2573d64802793320253b060b9507729¢3d
f5868ef6066a18277c932e59c0a516ec58920b00
ade59ed356fe72521ffd2ef12ff8896c852f11f8
cdebcalab6200570ba18dd6d392ffabf68c2bb464
cadf34d9d341efd2a85dd13ec3cd4ce8383e0f73
664e€a3e35376c81492457dc17832a4d0d602c8ae
74ba9ch2db29b8dd6376d112e9452d117a391b18
a3b4e5c9b1c3568c94923e2dd9a93090ebdf8536
99fd4870c20d8fa03cfa30e8055d3dfb348ed5cd
cc658ed07241¢1804cec75b12203be3cd8657b9b
7b395f4da7ed787d7aa4eb915f15377725ff8168

2fab6b83a6f9e1d0dd1bTbdceadb129d166aef1d

The audit activities can be grouped into the following three broad categories:

1. Security: Identifying security related issues within the contract.

2. Architecture: Evaluating the system architecture through the lens of established
smart contract best practices.

3. Code quality: A full review of the contract source code. The primary areas of focus
include:

Correctness

Readability

o

(o}

(o}

Scalability

(e}

Code complexity

o

Quality of test coverage
3 System Overview

The staking contracts are a mechanism for distributed protocol fees collected by the 0x
Exchange. Fees are distributed to pools of ZRX stakeholders according to a formula that
takes into account:

1. how much ZRX is being staked by the pool and

2. the amount of protocol fees generated by liquidity providers (“makers”) in that pool.

The v3 staking specification is the best available documentation for understanding how
the staking contract system works.

4 Risk Assessment

The code that handles staking is very complex. We remain uncomfortable with parts of the
code that were too difficult to audit effectively. That said, this doesn't mean it's unsafe to
interact with the contract. There are three types of interactions where funds are potentially
at risk:

1. ZRX deposits and withdrawals by stakers.

2. The staking contracts hold WETH (wrapped ether) that is collected as protocol fees
from the Exchange contracts.

3. Collected WETH is distributed to stakers according to the internal logic of the staking
contract.

https://github.com/0xProject/0x-protocol-specification/blob/3.0/staking/staking-specification.md

We can assess the risk associated with all three:

1. ZRX deposits and withdrawals make use of a fairly simple ZrxVault contract, which
includes a fail-safe mechanism which can be triggered by Ox if needed to allow stakers
to directly withdraw their ZRX. Excluding malicious action by Ox themselves, ZRX
deposits and withdrawals have low risk of fund loss.

2. Although WETH needs to be approved to the staking contracts, the only WETH
actually held by the staking contracts is what is collected in payProtocolFee , which
is invoked by the Exchange. There's low risk of WETH being inappropriately transferred
from users.

3. Most of the complexity of the staking contracts deals with how the collected fees are
distributed. This is the part of the code the audit team has less confidence in, meaning
there's a relatively higher risk of errors being made here.

This risk assessment means that the most likely type of bug to encounter is one where
rewards are paid out incorrectly, or a bug prevents paying out rewards altogether. Those
outcomes are no worse for stakers than simply not staking at all.

5 Issues

Each issue has an assigned severity:

e Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

o Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

e Major issues are security vulnerabilities that may not be directly exploitable or may
require certain conditions in order to be exploited. All major issues should be
addressed.

e Critical issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 Anyone can remove a maker’s pending pool join status
v Fixed

Resolution

This is fixed in OxProject/0Ox-monorepo#2250 by removing the two-step handshake for
a maker to join a pool.

Description

Using behavior described in issue 5.6, it is possible to delete the pending join status of any
maker in any pool by passingin NIL_POOL_ID to removeMakerFromStakingPool . Note
that the attacker in the following example must not be a confirmed member of any pool:

1. The attacker calls addMakerToStakingPool (NIL_POOL_ID, makerAddress) . In this
case, makerAddress can be almost any address, as long as it has not called
joinStakingPoolAsMaker (an easy exampleis address(@)). The key goal of this
call is to increment the number of makers in pool O:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L262

_poolById[poolId].numberOfMakers = uint256(pool.numberOfMakers).safeAdd(1’

2. The attacker calls removeMakerFromStakingPool (NIL_POOL_ID, targetAddress) .
This function queries getStakingPoolIdOfMaker(targetAddress) and compares it
to the passed-in pool id. Because the target is an unconfirmed maker, their staking
poolidis NIL_POOL_ID :

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L166-
L173

bytes32 makerPoolId = getStakingPoolIdOfMaker(makerAddress);
if (makerPoolId != poolld) {
LibRichErrors.rrevert(LibStakingRichErrors.MakerPoolAssignmentError(
LibStakingRichErrors.MakerPoolAssignmentErrorCodes.MakerAddressNof1
makerAddress,

makerPoolId
));

The check passes, and the target's _poolJoinedByMakerAddress structis deleted.
Additionally, the number of makers in pool 0 is decreased:

https://github.com/0xProject/0x-monorepo/pull/2250

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L176-L177

delete _poolJoinedByMakerAddress[makerAddress];
_poolById[poolId].numberOfMakers = uint256(_poolById[poolId].numberOfMakers).:

This can be used to prevent any makers from being confirmed into a pool.

Recommendation

See issue 5.6.

5.2 Delegated stake weight reduction can be bypassed by using an
external contract Won't Fix

Resolution

From the development team:

Although it is possible to bypass the weight reduction via external smart
contracts, we believe there is some value to having a lower delegated stake
weight as the default behavior. This can still approximate the intended
behavior and should give a very slight edge to pool operators that own their
Stake.

Description

Staking pools allow ZRX holders to delegate their staked ZRX to a market maker in
exchange for a configurable percentage of the stake reward (accrued over time through
exchange fees). When staking as expected through the Ox contracts, the protocol favors
ZRX staked directly by the operator of the pool, assigning a lower weight (90%) to ZRX
staked by delegation. In return, delegated members receive a configurable portion of the
operator’'s stake reward.

Using a smart contract, it is possible to represent ZRX owned by any number of parties as
ZRX staked by a single party. This contract can serve as the operator of a pool with a single
member—itself. The advantages are clear for ZRX holders:

e ZRX staked through this contract will be given full (100%) stake weight.

e Because stake weight is a factor in reward allocation, the ZRX staked through this
contract receives a higher proportion of the stake reward.

Recommendation

Remove stake weight reduction for delegated stake.

5.3 MixinParams.setParams bypasses safety checks made by
standard StakingProxy upgrade path. Medium v Fixed

Resolution

This is fixed in OxProject/Ox-monorepo#2279. Now the parameter validity is asserted
In setParams() .

Description

The staking contracts use a set of configurable parameters to determine the behavior of
various parts of the system. The parameters dictate the duration of epochs, the ratio of
delegated stake weight vs operator stake, the minimum pool stake, and the Cobb-Douglas
numerator and denominator. These parameters can be configured in two ways:

1. An authorized address can deploy a new Staking contract (perhaps with altered
parameters), and configure the StakingProxy to delegate to this new contract. This
is done by calling

o StakingProxy.detachStakingContract :

code/contracts/staking/contracts/src/StakingProxy.sol:L82-L90

function detachStakingContract()
external

onlyAuthorized

stakingContract = NIL_ADDRESS;

https://github.com/0xProject/0x-monorepo/pull/2279

emit StakingContractDetachedFromProxy();

o StakingProxy.attachStakingContract(newContract) :

code/contracts/staking/contracts/src/StakingProxy.sol:L72-L80

/// @dev Attach a staking contract; future calls will be delegated to
/// Note that this is callable only by an authorized address.

/// @aram _stakingContract Address of staking contract.

function attachStakingContract(address _stakingContract)

external

onlyAuthorized
{

_attachStakingContract(_stakingContract);
3

During the latter call, the StakingProxy performs a delegatecall to Staking.init
then checks the values of the parameters set during initialization:

code/contracts/staking/contracts/src/StakingProxy.sol:L208-L219

// Call ‘init()" on the staking contract to initialize storage.
(bool didInitSucceed, bytes memory initReturnData) = stakingContract.deleg
abi.encodeWithSelector(IStorageInit(0).init.selector)

)
if (!'didInitSucceed) {
assembly {
revert(add(initReturnData, 0x20), mload(initReturnData))
3
3

// Assert initialized storage values are valid
_assertValidStorageParams();

2. An authorized address can call MixinParams.setParams at any time and set the
contract's parameters to arbitrary values.

The latter method introduces the possibility of setting unsafe or nonsensical values for the
contract parameters: epochDurationInSeconds can be setto 0,
cobbDouglassAlphaNumerator can be larger than cobbDouglassAlphaDenominator ,
rewardDelegatedStakeWeight can be set to a value over 100% of the staking reward, and
more.

Note, too, that by using MixinParams.setParams to set all parameters to O, the Staking
contract can be re-initialized by way of Staking.init . Additionally, it can be re-attached
by way of StakingProxy.attachStakingContract , as the delegatecall to Staking.init
will succeed.

Recommendation

Ensure that calls to setParams check that the provided values are within the same range
currently enforced by the proxy.

5.4 Authorized addresses can indefinitely stall ZrxvaultBackstop
catastrophic failure mode Medium v Fixed

Resolution

This is fixed in OxProject/Ox-monorepo#2295 by removing the ZrxVaultBackstop
and read-only mode altogether.

Description

The ZrxVaultBackstop contract was added to allow anyone to activate the staking

system’s “catastrophic failure” mode if the StakingProxy is in “read-only” mode for at
least 40 days. To enable this behavior, the StakingProxy contract was modified to track

the last timestamp at which “read-only” mode was activated. This is done by way of
StakingProxy.setReadOnlyMode :

code/contracts/staking/contracts/src/StakingProxy.sol:L92-L104

function setReadOnlyMode(bool shouldSetReadOnlyMode)

external

https://github.com/0xProject/0x-monorepo/pull/2295

onlyAuthorized

// solhint-disable-next-1ine not-rely-on-time
uint96 timestamp = block.timestamp.downcastToUint96();
if (shouldSetReadOnlyMode) {
stakingContract = readOnlyProxy;
readOnlyState = IStructs.ReadOnlyState({
isReadOnlyModeSet: true,

lastSetTimestamp: timestamp

1);

Because the timestamp is updated even if “read-only” mode is already active, any
authorized address can prevent ZrxVaultBackstop from activating catastrophic failure
mode by repeatedly calling setReadOnlyMode .

Recommendation

If “read-only” mode is already active, setReadOnlyMode(true) should resultin a no-op.

5.5 Pool 0 can be used to temporarily prevent makers from joining
another pool Medium v Fixed

Resolution

This is fixed in OxProject/0Ox-monorepo#2250. Pool IDs now start at 1.

Description

removeMakerFromStakingPool reverts if the number of makers currently in the pool is 0,
due to safeSub catching an underflow:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L177

_poolById[poolId].numberOfMakers = uint256(_poolById[poolId].numberOfMakers).:

Because of this, edge behavior described in issue 5.6 can allow an attacker to temporarily
prevent makers from joining a pool:

https://github.com/0xProject/0x-monorepo/pull/2250

1. The attacker calls addMakerToStakingPool (NIL_POOL_ID, victimAddress) . This
sets the victim's MakerPoolJoinStatus.confirmed fieldto true and increases the
number of makers in pool 0 to 1:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L257-
L262

poolJoinStatus = IStructs.MakerPoolJoinStatus({
poolId: poolld,

confirmed: true

1);
_poolJoinedByMakerAddress[makerAddress] = poolJoinStatus;

_poolById[poolId].numberOfMakers = uint256(pool.numberOfMakers).safeAdd(1’

2. The attacker calls removeMakerFromStakingPool (NIL_POOL_ID, randomAddress) .

The net effect of this call simply decreases the number of makers in pool 0 by 1, back
to O:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L176-
L177

delete _poolJoinedByMakerAddress[makerAddress];
_poolById[poolId].numberOfMakers = uint256(_poolById[poolId].numberOfMake!

Typically, the victim should be able to remove themselves from pool 0 by calling
removeMakerFromStakingPool (NIL_POOL_ID, victimAddress) , but because the attacker
can set the pool's number of makers to 0, the aforementioned underflow causes this call to
fail. The victim must first understand what is happening in MixinStakingPool before they

are able to remedy the situation:

1. The victim must call addMakerToStakingPool (NIL_POOL_ID, randomAddress2) to
increase pool O's number of makers back to 1.

2. The victim can now call removeMakerFromStakingPool (NIL_POOL_ID,
victimAddress) , and remove their confirmed status.

Additionally, if the victim in question currently has a pending join, the attacker can use
issue 5.1 to first remove their pending status before locking them in pool 0.

Recommendation

See issue 5.17.

5.6 Recommendation: Fix weak assertions in MixinStakingPool
stemming from use of NIL_POOL_ID Medium v Fixed

Resolution

This is fixed in 0xProject/0Ox-monorepo#2250. Pool IDs now start at 1.

Description

The modifier onlyStakingPoolOperatorOrMaker(poolId) is used to authorize actions
taken on a given pool. The sender must be either the operator or a confirmed maker of the
pool in question. However, the modifier queries getStakingPoolId0fMaker(maker) , which
returns NIL_POOL_ID if the maker's MakerPoolJoinStatus structis not confirmed. This
implicitly makes anyone a maker of the nonexistent “pool 0":

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L189-L200

function getStakingPoolIdOfMaker(address makerAddress)
public
view
returns (bytes32)

{
IStructs.MakerPoolJoinStatus memory poolJoinStatus = _poolJoinedByMakerAdc
if (poolJoinStatus.confirmed) {
return poolJoinStatus.poolld;
} else {
return NIL_POOL_ID;
}
3

joinStakingPoolAsMaker(poolId) makes no existence checks on the provided pool id,
and allows makers to become pending makers in nonexistent pools.

https://github.com/0xProject/0x-monorepo/pull/2250

addMakerToStakingPool (poolId, maker) makes no existence checks on the provided
pool id, allowing makers to be added to nonexistent pools (as long as the sender is an
operator or maker in the pool).

Recommendation

1. Avoid use of 0x00...00 for NIL_POOL_ID .Instead,use 2%x%256 - 1 .

2. Implement stronger checks for pool existence. Each time a pool id is supplied, it
should be checked that the pool id is between 0 and nextPoollId .

3. onlyStakingPoolOperatorOrMaker should revertif poolId == NIL_POOL_ID or if
poolId is not in the valid range: (0, nextPoolld).

5.7 LibFixedMath functions fail to catch a number of overflows
Medium v Fixed

Resolution

This is fixed in OxProject/0Ox-monorepo#2255 and OxProject/0x-monorepo#2311.

Description

The __add() , __mul() ,and __div() functions perform arithmetic on 256-bit signed

integers, and they all miss some specific overflows.

Addition Overflows

code/contracts/staking/contracts/src/libs/LibFixedMath.sol:L359-L376

function _add(int256 a, int256 b) private pure returns (int256 c) {
c =a+b;
if (c > 08 8% a <0 & b <0){
LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
LibFixedMathRichErrors.BinOpErrorCodes.SUBTRACTION_OVERFLOW,
a,
b
));

https://github.com/0xProject/0x-monorepo/pull/2255
https://github.com/0xProject/0x-monorepo/pull/2311

}
if (c<08& a>08&% b >0) {
LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
LibFixedMathRichErrors.BinOpErrorCodes.ADDITION_OVERFLOW,
a,
b
));

The two overflow conditions it tests for are:

1. Adding two positive numbers shouldn't result in a negative number.

2. Adding two negative numbers shouldn't result in a positive number.

__add(-2*%255, -2x%255) returns @ without reverting because the overflow didn't
match either of the above conditions.

Multiplication Overflows

code/contracts/staking/contracts/src/libs/LibFixedMath.sol:L332-L345

/// @dev Returns the multiplication two numbers, reverting on overflow.
function _mul(int256 a, int256 b) private pure returns (int256 c) {

if (a ==0) {
return 0;

}

c=a*b;

if (¢ / a!=b){
LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
LibFixedMathRichErrors.BinOpErrorCodes.MULTIPLICATION_OVERFLOW,
a,
b
));

The function checks via division for most types of overflows, but it fails to catch one
particular case. __mul(-2*%*255, -1) returns -2x%*255 without error.

Division Overflows

code/contracts/staking/contracts/src/libs/LibFixedMath.sol:L347-L357

/// @dev Returns the division of two numbers, reverting on division by zero.
function _div(int256 a, int256 b) private pure returns (int256 c) {
if (b == 0) {
LibRichErrors.rrevert(LibFixedMathRichErrors.BinOpError(
LibFixedMathRichErrors.BinOpErrorCodes.DIVISION_BY_ZERO,

a,
b
));
}
c =a/ b;

It does not check for overflow. Due to this
-2*%%x255 |

div(-2x%255, -1) erroneously returns

IR ——

Recommendation

For addition, the specific case of __add(-2%*255, -2%x255) can be detected by using a
>= @ checkinstead of > 0 , but the below seems like a clearer check for all cases:

// 1f b 1is negative, then the result should be less than a
if (b <0 & c >= a) { /* subtraction overflow */ }

// 1f b 1s positive, then the result should be greater than a
if (b >0 & & c <= a) { /* addition overflow */ }

For multiplication and division, the specific values of -2x%x255 and -1 are the only
missing cases, so that can be explicitly checked inthe __mul() and __div() functions.

5.8 Recommendation: Remove MixinAbstract and fold
MixinStakingPoolRewards into MixinFinalizer and MixinStake
Won't Fix

Resolution

The development team investigated this suggestion, but they were ultimately
uncomfortable making such a large change in this cycle. This can be considered
again in a future version of the code.

Description

After implementing issue 5.12, issue 5.11, issue 5.10, and issue 5.9, MixinAbstract
serves little utility except as a way to pull functionality from MixinFinalizer into

MixinStakingPoolRewards . The abstract pattern adds unnecessary cognitive overhead
and should be eliminated if possible. One possible method for this is as follows:

1. Move MixinStakingPoolRewards.withdrawDelegatorRewards into MixinStake . AS

per the comments above this function, its behavior is very similar to functions in
MixinStake :

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRewards.sol:L35-
L56

/// @dev Syncs rewards for a delegator. This includes transferring WETH

/7 rewards to the delegator, and adding/removing

/77 dependencies on cumulative rewards.

V4 This is used by a delegator when they want to sync their rewards
/7 without delegating/undelegating. It's effectively the same as
/77 delegating zero stake.

/// @aram poollId Unique id of pool.
function withdrawDelegatorRewards(bytes32 poollId)
external

address member = msg.sender;
_withdrawAndSyncDelegatorRewards(

poolld,

member

);

// Update stored balance with synchronized version; this prevents

// redundant withdrawals.
_delegatedStakeToPoolByOwner[member][poolId] =
_loadSyncedBalance(_delegatedStakeToPoolByOwner[member][poolId]);

2. Move the rest of the MixinStakingPoolRewards functionsinto MixinFinalizer .
This change allows the MixinStakingPoolRewards and MixinAbstract filesto be
removed. MixinStakingPool can now inherit directly from MixinFinalizer .

After implementing all recommendations mentioned here, the inheritance graph of the
staking contracts is much simpler. The previous graph is pictured here:

LibStakingRichErrors LibCobbDouglas. LibFixedMath LibFixedMathRichErrors LibSafeDowncast

MixinExchangeFees

MixinStakingPool
MixinStakingPoolRewards

MixinCumulativeRewards

MixinStakeBalances

MixinStakeStorage MixinDeploy: menrcy

MixinScheduler MixinExchangeManager

IStakingEvents

Authorizable

The new graph is pictured here:

@ LibStakingRichErrors LibCobbDouglas LibFixedMathRichErrors

Y l
MixinStakeBalances MixinCumulativeRewards
MixinStakeStorage

MixinDeploymentConstants MixinScheduler MixinExchangeManager

IstakingEvents

Authorizable

Further improvements may consider:

1. Having MixinStorage inherit MixinConstants and IStakingEvents

2. Moving _loadCurrentBalance into MixinStorage . Currently MixinStakeBalances
only inherits from MixinStakeStorage because of this function.

3. After implementing the above, MixinExchangeFees is no longer dependent on
MixinStakingPool and can inherit directly from MixinExchangeManager

A sample inheritance graph including the above is pictured below:

v
@

&

ixinCumulativeRewards
Mlxmsmkesmrage MLmexchangeManager

/i\

MixinDeploymentConstants

5.9 Recommendation: remove confusing access to
activePoolsThisEpoch v Fixed

Resolution

This is fixed in OxProject/Ox-monorepo#2276. Along with other state cleanup, these
functions and epoch % 2 indexing altogether were removed.

Description

MixinFinalizer provides two functions to access activePoolsThisEpoch :

https://github.com/0xProject/0x-monorepo/pull/2276

1. _getActivePoolsFromEpoch returnsa storage pointer to the mapping:

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L211-L225

/// @dev Get a mapping of active pools from an epoch.

/77 This uses the formula ‘epoch % 2' as the epoch index in order
/// to reuse state, because we only need to remember, at most, two
/7 epochs at once.

/// @return activePools The pools that were active in ‘epoch .
function _getActivePoolsFromEpoch(
uint256 epoch

)

internal

view

returns (mapping (bytes32 => IStructs.ActivePool) storage activePools’
{

activePools = _activePoolsByEpoch[epoch % 2];

return activePools;
3

2. _getActivePoolFromEpoch invokes _getActivePoolsFromEpoch ,then loads an
ActivePool struct from a passed-in poolld :

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L195-L209

/// @dev Get an active pool from an epoch by its ID.
/// @param epoch The epoch the pool was/will be active in.
/// @param poolld The ID of the pool.
/// @return pool The pool with ID ‘poollId’ that was active in ‘epoch .
function _getActivePoolFromEpoch(
uint256 epoch,
bytes32 poolld

)

internal

view

returns (IStructs.ActivePool memory pool)
{

pool = _getActivePoolsFromEpoch(epoch)[poolld];

return pool;

Ultimately, the two functions are syntax sugar for activePoolsThisEpoch[epoch % 27,
with the latter also accessing a value within the mapping. Because of the naming similarity,
and because one calls the other, this abstraction is more confusing that simply accessing
the state variable directly.

Additionally, by removing these functions and adopting the long-form syntax,
MixinExchangeFees no longer needs to inherit MixinFinalizer .

5.10 Recommendation: remove
MixinFinalizer._getUnfinalizedPoolRewardsFromState

Won't Fix

Resolution

The development team decided to keep this function for its optimization on storage
loads. It's will still be used internally by getters that are important for client-side code.

Description

MixinFinalizer._getUnfinalizedPoolRewardsFromState is a simple wrapper around the

library function LibCobbDouglas.cobbDouglas :

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L250-L286

function _getUnfinalizedPoolRewardsFromState(
IStructs.ActivePool memory pool,
IStructs.UnfinalizedState memory state

private

view

returns (uint256 rewards)

// There can't be any rewards if the pool was active or if it has
// no stake.
if (pool.feesCollected == 0) {

return rewards;

// Use the cobb-douglas function to compute the total reward.
rewards = LibCobbDouglas.cobbDouglas(

state.rewardsAvailable,

pool.feesCollected,

state.totalFeesCollected,

pool.weightedStake,

state.totalWeightedStake,

cobbDouglasAlphaNumerator,

cobbDouglasAlphaDenominator

);

// Clip the reward to always be under

// ‘rewardsAvailable - totalRewardsPaid’,

// 1in case cobb-douglas overflows, which should be unlikely.

uint256 rewardsRemaining = state.rewardsAvailable.safeSub(state.totalRewat
if (rewardsRemaining < rewards) {

rewards = rewardsRemaining;

After implementing issue 5.11, this function is only called a single time, in

MixinFinalizer.finalizePool :

code/contracts/staking/contracts/src/sys/MixinFinalizer.sol:L119-L129

// Noop if the pool was not active or already finalized (has no fees).
if (pool.feesCollected == 0) {

return;

// Clear the pool state so we don't finalize it again, and to recoup

// some gas.
delete _getActivePoolsFromEpoch(prevEpoch)[poollId];

// Compute the rewards.
uint256 rewards = _getUnfinalizedPoolRewardsFromState(pool, state);

Because it is only used a single time, and because it obfuscates an essential library call
during the finalization process, the function should be removed and folded into
finalizePool . Additionally, the first check for pool.feesCollected == @ can be
removed, as this case is covered in finalizePool already (see above).

5.11 Recommendation: remove complicating getters from
MixinStakingPoolRewards Won't Fix

Resolution

These getters are useful for client-side code, such as the staking interface.

Description

MixinStakingPoolRewards hastwo external view functions that contribute complexity
to essential functions, as well as the overall inheritance tree:

1. computeRewardBalanceOfOperator , used to compute the reward balance of a pool's
operator on an unfinalized pool:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRewards.sol:L55-
L69

/// @dev Computes the reward balance in ETH of the operator of a pool.
/// @aram poollId Unique id of pool.
/// @return totalReward Balance in ETH.
function computeRewardBalanceOfOperator(bytes32 poolld)
external
view

returns (uint256 reward)

// Because operator rewards are immediately withdrawn as WETH

// on finalization, the only factor in this function are unfinalized

// rewards.

IStructs.Pool memory pool = _poolById[poolId];

// Get any unfinalized rewards.

(uint256 unfinalizedTotalRewards, uint256 unfinalizedMembersStake) =
_getUnfinalizedPoolRewards(poolId);

2. computeRewardBalanceOfDelegator , used to compute the reward balance of a
delegator for an unfinalized pool:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRewards.sol:L80-
L99

/// @dev Computes the reward balance in ETH of a specific member of a poo.
/// @param poollId Unique id of pool.
/// @param member The member of the pool.
/// @return totalReward Balance in ETH.
function computeRewardBalanceOfDelegator(bytes32 poolld, address member)
external
view

returns (uint256 reward)

IStructs.Pool memory pool = _poolById[poolId];

// Get any unfinalized rewards.

(uint256 unfinalizedTotalRewards, uint256 unfinalizedMembersStake) =
_getUnfinalizedPoolRewards(poollId);

// Get the members' portion.

(, uint256 unfinalizedMembersReward) = _computePoolRewardsSplit(
pool.operatorShare,
unfinalizedTotalRewards,

unfinalizedMembersStake

)5

These two functions are the sole reason for the existence of
MixinFinalizer._getUnfinalizedPoolRewards , one of the two functions in

MixinAbstract :

code/contracts/staking/contracts/src/sys/MixinAbstract.sol:L40-L52

/// @dev Computes the reward owed to a pool during finalization.
77/ Does nothing if the pool is already finalized.
/// @aram poollId The pool's ID.
/// @return totalReward The total reward owed to a pool.
/// @return membersStake The total stake for all non-operator members in
77/ this pool.
function _getUnfinalizedPoolRewards(bytes32 poolId)
internal
view
returns (
uint256 totalReward,
uint256 membersStake

);

These functions also necessitate two additional parameters in
MixinStakingPoolRewards._computeDelegatorReward , which are used a single time to

call _computeUnfinalizedDelegatorReward :

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRewards.sol:L253-
L259

// 1/3 Unfinalized rewards earned in ‘currentEpoch - 1°.
reward = _computeUnfinalizedDelegatorReward(
delegatedStake,
_currentEpoch,
unfinalizedMembersReward,
unfinalizedMembersStake

);

Note that computeRewardBalanceOfOperator and computeRewardBalanceOfDelegator
contain the only calls to _computeDelegatorReward with nonzero values for the above
parameters, unfinalizedMembersReward and unfinalizedMembersStake . For all
essential functions, the call to _computeUnfinalizedDelegatorReward is a no-op.

By removing the functions computeRewardBalanceOfOperator and
computeRewardBalanceOfDelegator , the following simplifications can be made:

_getUnfinalizedPoolRewards can be removed from both MixinAbstract and

MixinFinalizer

The parameters unfinalizedMembersReward and unfinalizedMembersStake can be
removed from _computeDelegatorReward

The function _computeUnfinalizedDelegatorReward can be removed

A branch of now-unused logic in _computeDelegatorReward can be removed

5.12 Recommendation: remove unneeded dependency on
MixinStakeBalances Won't Fix

Resolution

From the development team:

We're going to keep this abstraction to future-proof balance queries.

Description

MixinStakeBalances has two functions used by inheriting contracts:

1. getStakeDelegatedToPoolByOwner , which provides shorthand to access
_delegatedStakeToPoolByOwner

code/contracts/staking/contracts/src/stake/MixinStakeBalances.sol:L84-L95

/// @dev Returns the stake delegated to a specific staking pool, by a give
/// @aram staker of stake.
/// @aram poollId Unique Id of pool.
/// @return Stake delegated to pool by staker.
function getStakeDelegatedToPoolByOwner(address staker, bytes32 poolld)
public
view

returns (IStructs.StoredBalance memory balance)

balance = _loadCurrentBalance(_delegatedStakeToPoolByOwner[staker][poc

return balance;

2. getTotalStakeDelegatedToPool , which provides shorthand to access
_delegatedStakeByPoolId :

code/contracts/staking/contracts/src/stake/MixinStakeBalances.sol:L97-L108

/// @dev Returns the total stake delegated to a specific staking pool,
V4 across all members.
/// @param poollId Unique Id of pool.
/// @return Total stake delegated to pool.
function getTotalStakeDelegatedToPool (bytes32 poolId)
public
view

returns (IStructs.StoredBalance memory balance)

balance = _loadCurrentBalance(_delegatedStakeByPoolId[poolId]);

return balance;

Each of these functions is used only a single time:
1. MixinExchangeFees.payProtocolFee :

code/contracts/staking/contracts/src/fees/MixinExchangeFees.sol:L78

uint256 poolStake = getTotalStakeDelegatedToPool(poolId).currentEpochBalar

2. MixinExchangeFees._computeMembersAndWeightedStake :

code/contracts/staking/contracts/src/fees/MixinExchangeFees.sol:L143-L146

uint256 operatorStake = getStakeDelegatedToPoolByOwner(
_poolById[poolId].operator,
poolId

).currentEpochBalance;

By replacing these function invocations in MixinExchangeFees with the long-form access
to each state variable, MixinStakeBalances will nolonger need to be included in the
inheritance trees for several contracts.

5.13 Misleading MoveStake event when moving stake from
UNDELEGATED to UNDELEGATED v Fixed

Resolution

This is fixed in 0xProject/0Ox-monorepo#2280. If amount is @ or the move is from
UNDELEGATED to UNDELEGATED , the function performs an early return.

Description

Although moving stake between the same status (UNDELEGATED <=> UNDELEGATED)
should be a no-op, calls to moveStake succeed even for invalid amount and nonsensical

poolId . The resulting MoveStake event can log garbage, potentially confusing those
observing events.

Examples

When moving between UNDELEGATED and UNDELEGATED , each check and function call
results in a no-op, save the final event:

1. Neither from nor to are StakeStatus.DELEGATED , so these checks are passed:

code/contracts/staking/contracts/src/stake/MixinStake.sol:L115-L129

if (from.status == IStructs.StakeStatus.DELEGATED) {
_undelegateStake(
from.poolld,
staker,

amount

);

if (to.status == IStructs.StakeStatus.DELEGATED) {

https://github.com/0xProject/0x-monorepo/pull/2280

_delegateStake(
to.poolld,
staker,

amount

);

2. The primary state changing function, _moveStake ,immediately returns because the
from and to balance pointers are equivalent:

code/contracts/staking/contracts/src/stake/MixinStakeStorage.sol:L47-L49

if (_arePointerskEqual(fromPtr, toPtr)) {

return;

3. Finally, the MoveStake event is invoked, which can log completely invalid values for
amount , from.poolIld,and to.poolld :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L141-L148

emit MoveStake(
staker,
amount,
uint8(from.status),
from.poollId,
uint8(to.status),
to.poolId

);

Recommendation

If amount is O orif moving between UNDELEGATED and UNDELEGATED , this function
should no-op or revert. An explicit check for this case should be made near the start of the
function.

5.14 The staking contracts contain several artifacts of a quickly-
changing codebase v Fixed

Resolution

These issues were addressed in a variety of fixes, most notably OxProject/0x-
Monorepo#2262.

Examples

1. address payable is used repeatedly, but payments use WETH:
o MixinStakingPool.createStakingPool :

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L54

address payable operator = msg.sender;

(o}

ZrxVault.stakingProxyAddress :

code/contracts/staking/contracts/src/ZrxVault.sol:L38

address payable public stakingProxyAddress;

o

ZrxVault.setStakingProxy :

code/contracts/staking/contracts/src/ZrxVault.sol:L76

function setStakingProxy(address payable _stakingProxyAddress)

o

IZrxVault.setStakingProxy :

code/contracts/staking/contracts/src/interfaces/I1ZrxVault.sol:L53

function setStakingProxy(address payable _stakingProxyAddress)

struct IStructs.Pool :

o

https://github.com/0xProject/0x-monorepo/pull/2262

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L114

address payable operator;

o MixinStake.stake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L38

address payable staker = msg.sender;

o MixinStake.unstake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L63

address payable staker = msg.sender;

o MixinStake.moveStake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L119

address payable staker = msg.sender;

o MixinStake._delegateStake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L181

address payable staker,

o MixinStake._undelegateStake :

code/contracts/staking/contracts/src/stake/MixinStake.sol:L210

address payable staker,

2. Some identifiers are used multiple times for different purposes:

o currentEpoch is:

= A state variable:

code/contracts/staking/contracts/src/immutable/MixinStorage.sol:L86

uint256 public currentEpoch = INITIAL_EPOCH;

= A function parameter:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRewards.

uint256 currentEpoch,

= A struct field:

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L62

uint32 currentEpoch;

3. Several comments are out of date:

o Many struct comments reference fees and rewards denominated in ETH, while
only WETH is used:

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L36-L38

/// @aram rewardsAvailable Rewards (ETH) available to the epoch
/77 being finalized (the previous epoch). This is simply the b:
/17 of the contract at the end of the epoch.

o UnfinalizedState.totalFeesCollected should specify that it is tracking fees
attributed to a pool. Fees not attributed to a pool are still collected, but are not
recorded:

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L41

/// @param totalFeesCollected The total fees collected for the epoch |

o UnfinalizedState.totalWeightedStake is copy-pasted from
totalFeesCollected :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L42

/// @param totalWeightedStake The total fees collected for the epoch [

o Pool.initialized seems to be copy-pasted from an older version of the struct
StoredBalance or StakeBalance :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L108

/// @param initialized True iff the balance struct is initialized.

4. The final contracts produce several compiler warnings:

o Several functions are intentionally marked view to allow overriding
implementations to read from state. These can be silenced by adding
block.timestamp; or similar statements to the functions.

o One function is erroneously marked view , and should be changed to pure:

code/contracts/staking/contracts/src/staking_pools/MixinStakingPoolRewards.sol:l
L330

/// @dev Computes the unfinalized rewards earned by a delegator in the
/// @aram unsyncedStake Unsynced delegated stake to pool by staker
/// @aram currentEpoch The epoch in which this call is executing
/// @aram unfinalizedMembersReward Unfinalized total members reward
/// @param unfinalizedMembersStake Unfinalized total members stake (1i:
/// @return reward Balance in WETH.
function _computeUnfinalizedDelegatorReward(

IStructs.StoredBalance memory unsyncedStake,

uint256 currentEpoch,

uint256 unfinalizedMembersReward,

uint256 unfinalizedMembersStake

private

view

returns (uint256)

5.15 Remove unneeded fields from StoredBalance and Pool structs
v Fixed

Resolution

This is fixed in OxProject/0Ox-monorepo#2248. As part of a larger refactor, these fields
were removed.

Description

Both structs have fields that are only written to, and never read:
1. StoredBalance.isInitialized :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L61
bool islInitialized;

2. Pool.initialized :

code/contracts/staking/contracts/src/interfaces/IStructs.sol:L113
bool initialized;

Recommendation

The unused fields should be removed.

5.16 Remove unnecessary fallback function in Staking contract
v Fixed

Resolution

https://github.com/0xProject/0x-monorepo/pull/2248

This is fixed in 0xProject/0Ox-monorepo#2277.

Description

The Staking contracthas a payable fallback function that is never used. Because it is
used with a proxy contract, this pattern introduces silent failures when calls are made to
the contract with no matching function selector.

Recommendation

Remove the fallback function from Staking .

5.17 Pool IDs can just be incrementing integers v Fixed

Resolution

This is fixed in OxProject/0Ox-monorepo#2250. Pool IDs now start at T and increment
by 1 each time.

Description

Pool IDs are currently bytes32 values that increment by 2xx128 . After discussion with
the development team, it seems that this was in preparation for a feature that was
ultimately not used. Pool IDs should instead just be incrementing integers.

Examples

code/contracts/staking/contracts/src/immutable/MixinConstants.sol:L30-L34

// The upper 16 bytes represent the pool id, so this would be pool id 1. See |
bytes32 constant internal INITIAL_POOL_ID = 0x0000000000000000000000000000000°

// The upper 16 bytes represent the pool id, so this would be an increment of
uint256 constant internal POOL_ID_INCREMENT_AMOUNT = 0x0000000000000000000000¢

code/contracts/staking/contracts/src/staking_pools/MixinStakingPool.sol:L271-L280

https://github.com/0xProject/0x-monorepo/pull/2277
https://github.com/0xProject/0x-monorepo/pull/2250

/// @dev Computes the unique id that comes after the input pool id.
/// @aram poollId Unique id of pool.
/// @return Next pool id after input pool.
function _computeNextStakingPoolId(bytes32 poolld)
internal
pure
returns (bytes32)

return bytes32(uint256(poolId).safeAdd(POOL_ID_INCREMENT_AMOUNT));

Recommendation

Make pool IDs uint256 values and simply add 1 to generate the next ID.

5.18 LibProxy.proxyCall() may overwrite important memory
v Fixed

Resolution

This is fixed in OxProject/Ox-monorepo#2301. This function has been rewritten in
Solidity and now avoids manual memory management.

Description

LibProxy.proxyCall() copies from call data to memory, starting at address O:

code/contracts/staking/contracts/src/libs/LibProxy.sol:L52-L71

assembly {
// store selector of destination function
let freeMemPtr := 0@
if gt(customEgressSelector, 0) {
mstore(0x0, customEgressSelector)
freeMemPtr := add(freeMemPtr, 4)

https://github.com/0xProject/0x-monorepo/pull/2301

// adjust the calldata offset, if we should ignore the selector
let calldataOffset := 0
if gt(ignorelngressSelector, 0) {

calldataOffset := 4

// copy calldata to memory

calldatacopy(
freeMemPtr,
calldataOffset,
calldatasize()
)

The first 64 bytes of memory are treated as “scratch space” by the Solidity compiler.
Writing beyond that point is dangerous, as it will overwrite the free memory pointer and the
“zero slot” which is where length-0 arrays point.

Although the current callers of proxyCall() dont appear to use any memory after calling
proxyCall() , future changes to the code may introduce very serious and subtle bugs due
to this unsafe handling of memory.

Recommendation

Use the actual free memory pointer to determine where it's safe to write to memory.
6 Tool-Based Analysis

Several tools were used to perform automated analysis of the reviewed contracts. These
issues were reviewed by the audit team, and relevant issues are listed in the Issue Details
section.

6.1 MythX

MythX is a security analysis API for Ethereum smart contracts. It
performs multiple types of analysis, including fuzzing and symbolic
execution, to detect many common vulnerability types. The tool was
used for automated vulnerability discovery for all audited contracts and
libraries. More details on MythX can be found at mythx.io.

https://solidity.readthedocs.io/en/v0.5.11/miscellaneous.html#layout-in-memory
https://mythx.io/

The full set of MythX results for both the exchange and staking contracts are available in a

separate report.

6.2 Surya

Surya is an utility tool for smart contract systems. It provides a number of visual outputs
and information about structure of smart contracts. It also supports querying the function
call graph in multiple ways to aid in the manual inspection and control flow analysis of

contracts.

Below is a complete list of functions with their visibility and modifiers:

Surya’s Description Report

Files Description Table

File Name
ReadOnlyProxy.sol
Staking.sol
StakingProxy.sol
ZrxVault.sol
fees/MixinExchangeFees.sol
fees/MixinExchangeManager.sol
immutable/MixinConstants.sol
immutable/MixinDeploymentConstants.sol
immutable/MixinStorage.sol
interfaces/IStaking.sol
interfaces/IStakingEvents.sol
interfaces/IStakingProxy.sol
interfaces/IStorage.sol
interfaces/IStoragelnit.sol

interfaces/IStructs.sol

SHA-1 Hash
6ec64526446ebff87ec5528ee3b2786338cc4fal
67ddcb9ab75e433882e28d9186815990b7084c61
248f562d014d0b1cabde3212966af3e52a7deef1
6c3249314868a2f5d0984122e8ab1413a5b521¢c9
9ac3b696baa8ba09305cfc83d3c08f17d9d528e1
46f48136a49919cdb5588dc1b3d64c977¢3367f2
97c2ac83ef97a09cfd485chb0d4b119ba0902cc79
424122c45df8e494c4a78f239ea07ff0400d694b
8ad475b0e424e7a3ff65eedf2€999¢chad98f414c8
ec1d7f214e3fd40e14716de412deee9769359bc0
25f16b814c4dfod2002316831¢3f727d858456c4
02e35c6b51e08235b2a01d30a8082d60d9d61bee
eeaa’/98c262b46d1874e904cf7de0423d4132cee
b9899b03e474eabadc3b4818a4357f71b8d288d4

fee17d036883d641afb1222b75eec8427f3cdb96

https://github.com/ConsenSys/0x-v3-mythx-report

File Name
interfaces/IZrxVault.sol
libs/LibCobbDouglas.sol
libs/LibFixedMath.sol
libs/LibFixedMathRichErrors.sol
libs/LibProxy.sol
libs/LibSafeDowncast.sol
libs/LibStakingRichErrors.sol
stake/MixinStake.sol
stake/MixinStakeBalances.sol
stake/MixinStakeStorage.sol
staking_pools/MixinCumulativeRewards.sol
staking_pools/MixinStakingPool.sol
staking_pools/MixinStakingPoolRewards.sol
sys/MixinAbstract.sol
sys/MixinFinalizer.sol
sys/MixinParams.sol

sys/MixinScheduler.sol

SHA-1 Hash
9067154651675317e000cfa92de9741e50c1¢809
242d62d71cf8bc09177d240c0db59b83f9bb4e96
36311e7be09a947/fadebcd8c544cacd13d65833¢
39cb3e07bbce3272bbf090e87002d5834d288ec2
29abe52857a782c8da39b053cc54e02e295¢cT1ae?2
ae16ed2573d64802793320253b060b9507729¢3d
f5868ef6066a18277c932e59¢0a516ec58920b00
ade59ed356fe725211fd2ef12ff8896c852f1118
cdebcalab6200570ba18dded392ffabf68c2bb464
cadf34d9d341efd2a85dd13ec3cd4ce8383e0f73
664e€a3e35376c81492457dc17832a4d0d602¢c8ae
74ba9ch2db29b8dd6376d112e9452d117a391b18
a3b4e5c9b1c3568c94923e2dd9a93090ebdf8536
99fd4870c20d8fa03cfa30e8055d3dfb348ed5cd
cc658ed07241¢1804cec/5b12203be3cd8657b9b
7b395f4da7ed787d7aa4eb915f15377725ff8168

2fabb6b83a6f9e1d0dd1b1bdceadb129d166aef1d

Contracts Description Table

Contract

L

ReadOnlyProxy

L

L

Staking

Type

Function Name

Implementation
<Fallback>

revertDelegateCall

Implementation

Bases

Visibility

MixinStorage
External |
External !

IStaking, MixinPa

MixinStake,
MixinExchangef

Contract

L

L

StakingProxy

L

L

ZrxVault

L

L

Type
<Fallback>

init

Implementation
<Constructor>
<Fallback>
attachStakingContract
detachStakingContract
setReadOnlyMode
batchExecute
_assertValidStorageParams

_attachStakingContract

Implementation
<Constructor>
setStakingProxy

enterCatastrophicFailure

setZrxProxy

depositFrom

withdrawFrom

withdrawAllFrom
balanceOf

_withdrawFrom

_assertSenderlsStakingProxy
_assertinCatastrophicFailure

_assertNotInCatastrophicFailure

Bases
External 1

Public I

IStakingProxy, Mixin

Public I

External

External

External

External

External
Internal ‘g

Internal ‘@

Authorizable, [Zrx

Public !

External

External

External

External

External

External

External
Internal ‘@
Private @
Private g

Private ‘@

Contract Type Bases

MixinExchangeMe
MixinExchangeFees Implementation MixinStakingPc
MixinFinalize
L payProtocolFee External I
L getActiveStakingPoolThisEpoch External !
L _computeMembersAndWeightedStake Private ‘g
L _assertValidProtocolFee Private ‘g
. . IStakingEvent
MixinExchangeManager Implementation .
MixinStorage
L addExchangeAddress External I
L removeExchangeAddress External I
MixinConstants Implementation MixinDeploymentCc
MixinDeploymentConstants Implementation
L getWethContract Public !
L getZrxVault Public I
.. . MixinConstan
MixinStorage Implementation .
Authorizable
IStaking Interface
L moveStake External !
L payProtocolFee External !
L stake External !
IStakingEvents Interface
IStakingProxy Interface
L <Fallback> External 1
L attachStakingContract External I

L detachStakingContract External

Contract

IStorage

L

L

IStoragelnit

L

IStructs

1ZrxVault

L

L

Type

Interface
stakingContract
readOnlyProxy
readOnlyProxyCallee
nextPoolld
numMakersByPoolld
currentEpoch
currenteEpochStartTimelnSeconds
protocolFeesThisEpochByPool
activePoolsThisEpoch
validExchanges
epochDurationInSeconds
rewardDelegatedStakeWeight
minimumPoolStake
maximumMakersinPool
cobbDouglasAlphaNumerator

cobbDouglasAlphaDenominator

Interface

init

Interface

Interface
setStakingProxy
enterCatastrophicFailure
setZrxProxy

depositFrom

Bases

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

External

Contract

L
L

L

LibCobbDouglas

L

LibFixedMath

L

L

LibFixedMathRichErrors

Type
withdrawFrom
withdrawAllFrom

balanceOf

Library

cobbDouglas

Library
one
add
sub
mul
div

mulDiv

uintMul
abs
invert
toFixed
toFixed
toFixed
toFixed
tolnteger
In
exp
_mul
_div

_add

Library

Bases

External !

External

External

B

Internal

Internal

D)

B

Internal

B

Internal

Internal

B

B

Internal

B

Internal

D)

Internal

B

Internal

B

Internal

B

Internal

B

Internal

B

Internal

D)

Internal
Internal ‘g
Internal g
Internal o
Private &
Private &

Private ‘g

Contract

L
L

L

LibProxy

L

LibSafeDowncast

L
L

L

LibStakingRichErrors

L

L

Type
SignedValueError
UnsignedValueError

BinOpkError

Library

proxyCall

Library
downcastToUint96
downcastToUint64

downcastToUint32

Library
OnlyCallableByExchangeError
ExchangeManagerError
InsufficientBalanceError
OnlyCallableByPoolOperatorOrMakerError
MakerPoolAssignmentError
BlockTimestampTool.owError
OnlyCallableByStakingContractError
OnlyCallablelfinCatastrophicFailureError
OnlyCallablelfNotInCatastrophicFailureError
OperatorShareError
PoolExistenceError
InvalidProtocolFeePaymentError
InvalidStakeStatusError
InitializationError
InvalidParamValueError

ProxyDestinationCannotBeNilError

Bases

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

Internal

D D

B

D)

D D

B

(S BN SR SR SR SN SR RN SR SR SN SR RN SN b

B

Contract Type Bases

L PreviousEpochNotFinalizedError Internal ‘@
MixinStake Implementation MixinStakingP
L stake External !
L unstake External !
L moveStake External !
L _delegateStake Private ‘&
L _undelegateStake Private ‘g
L _getBalancePtrFromStatus Private o/
MixinStakeBalances Implementation MixinStakeStor.
L getGlobalActiveStake External !
L getGloballnactiveStake External I
L getGlobalDelegatedStake External I
L getTotalStake External !
L getActiveStake External !
L getinactiveStake External I
L getStakeDelegatedByOwner External !
L getWithdrawableStake Public !
L getStakeDelegatedToPoolByOwner Public !
L getTotalStakeDelegatedToPool Public I
L _computeWithdrawableStake Internal ‘@
MixinStakeStorage Implementation MixinSchedul
L _moveStake Internal @
L _loadSyncedBalance Internal ‘g
L _loadUnsyncedBalance Internal ‘o
L _increaseCurrentAndNextBalance Internal ‘@

L _decreaseCurrentAndNextBalance Internal ‘g

Contract

L
L
L

L

MixinCumulativeRewards

L

L

MixinStakingPool

Type
_increaseNextBalance
_decreaseNextBalance

_storeBalance

_arePointersEqual

Implementation
_initializeCumulativeRewards
_isCumulativeRewardSet
_forceSetCumulativeReward
_computeMemberRewardOverlInterval
_getMostRecentCumulativeReward

_getCumulativeRewardAtEpoch

Implementation

createStakingPool
decreaseStakingPoolOperatorShare

joinStakingPoolAsMaker

addMakerToStakingPool

removeMakerFromStakingPool
getStakingPoolldOfMaker
getStakingPool
_addMakerToStakingPool
_computeNextStakingPoolld

_assertStakingPoolExists
_assertNewOperatorShare

_assertSenderlsPoolOperatorOrMaker

Bases
Internal ‘@
Internal ‘g
Private ‘g

Private ‘&

MixinStakeBalar
Internal ‘@
Internal ‘g
Internal ‘g
Internal ‘@
Internal ‘g
Internal ‘@

MixinAbstrac
MixinStakingPoolR

External 1

External !

External !

External

External !
Public I
Public I
Internal ‘@
Internal ‘g
Internal ‘g
Private ‘&

Private ‘g

Contract

MixinStakingPoolRewards

MixinAbstract

L

L

MixinFinalizer

L

L

Type
Implementation

withdrawDelegatorRewards
computeRewardBalanceOfOperator
computeRewardBalanceOfDelegator
_withdrawAndSyncDelegatorRewards
_syncPoolRewards
_computePoolRewardsSplit
_computeDelegatorReward
_computeUnfinalizedDelegatorReward
_increasePoolRewards

_decreasePoolRewards

Implementation
finalizePool

_getUnfinalizedPoolRewards

Implementation
endEpoch
finalizePool
_getUnfinalizedPoolRewards
_getActivePoolFromEpoch
_getActivePoolsFromEpoch
_wrapEkth
_getAvailableWethBalance
_getUnfinalizedPoolRewardsFromState

_creditRewardsToPool

Bases

MixinAbstrac
MixinCumulativeRe

External 1
External 1
External 1
Internal ‘g
Internal ‘g
Internal ‘g
Private ‘g
Private ‘g
Private ‘&

Private ‘g

Public I

Internal ‘@

MixinStakingPoolR
External |
Public I
Internal ‘g
Internal ‘g
Internal ‘g
Internal ‘g
Internal ‘g
Private ‘g

Private ‘g

Contract

MixinParams

MixinScheduler

Type

Implementation

setParams
getParams
_initMixinParams
_assertParamsNotlInitialized

_setParams

Implementation

L getCurrentEpochEarliestEndTimelnSeconds
L _initMixinScheduler
L _goToNextEpoch
L _assertSchedulerNotlnitialized
Legend
Symbol Meaning
® Function can modify state
e2) Function is payable

Appendix 1 - Disclosure

Bases

IStakingEvent
MixinStorage

External 1
External 1
Internal ‘@
Internal ‘g
Private ‘@
IStakingEvent
MixinStorage
Public I
Internal ‘g
Internal ‘g

Internal ‘@

ConsenSys Diligence (“CD") typically receives compensation from one or more clients (the
“Clients”) for performing the analysis contained in these reports (the “Reports”). The
Reports may be distributed through other means, including via ConsenSys publications

and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and
the Reports do not guarantee the security of any particular project. This Report does not
consider, and should not be interpreted as considering or having any bearing on, the
potential economics of a token, token sale or any other product, service or other asset.
Cryptographic tokens are emergent technologies and carry with them high levels of

technical risk and uncertainty. No Report provides any warranty or representation to any
Third-Party in any respect, including regarding the bugfree nature of code, the business
model or proprietors of any such business model, and the legal compliance of any such
business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically,
for the avoidance of doubt, this Report does not constitute investment advice, is not
intended to be relied upon as investment advice, is not an endorsement of this project or
team, and it is not a guarantee as to the absolute security of the project. CD owes no duty
to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely
for Clients and published with their consent. The scope of our review is limited to a review
of Solidity code and only the Solidity code we note as being within the scope of our review
within this report. The Solidity language itself remains under development and is subject to
unknown risks and flaws. The review does not extend to the compiler layer, or any other
areas beyond Solidity that could present security risks. Cryptographic tokens are emergent
technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) — on
its website. CD hopes that by making these analyses publicly available, it can help the
blockchain ecosystem develop technical best practices in this rapidly evolving area of
innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other
computer links, gain access to web sites operated by persons other than ConsenSys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the
exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are
not responsible for the content or operation of such Web sites, and that ConsenSys and CD
shall have no liability to you or any other person or entity for the use of third party Web
sites. Except as described below, a hyperlink from this web Site to another web site does
not imply or mean that ConsenSys and CD endorses the content on that Web site or the
operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on the
Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date
appearing on the Report and is subject to change without notice. Unless indicated

otherwise, by ConsenSys and CD.

