
Shell Protocol Description

April 27, 2020

1 High level description

The goal of the Cowri Shell Protocol is to unify stablecoins into a coherent monetary system. This

current release is a first step towards that vision. It is a simple liquidity pool and automated market

maker (AMM) for stablecoin-to-stablecoin trades. The pool has three primary behaviors:

1. Liquidity providers can deposit tokens into the pool

2. Liquidity providers can withdraw tokens from the pool

3. The pool can autonomously swap tokens using its deposited liquidity

2 Utility function and shell tokens

Formally, a pool can be thought of as an economic agent with a portfolio of tokens x = (x1, x2, ..., xn),

and a utility function U(x) that assigns a scalar value to any given portfolio. A pool also issues its own

fungible, ERC-20 compliant token, shells, but we will cover that later. The utility function is composed

of a gain function, G(x), and a loss function, F (x):

U(x) = G(x) − F (x) G(x) =

n∑
i=1

xi F (x) =

n∑
i=1

f(xi)

The intent of the loss function, F , is to penalize a pool once it crossed a certain threshold and is no

longer considered, “balanced”. A balanced pool is one where each token, xi, is aligned with its pre-set

allotment, weighti. The total loss, F , is the sum of each token’s individual loss, f(xi), which can be

described as follows:

f(xi) =


0, βL ≤ xi ≤ βU

(xi − βU )2 ∗ δ/ideali, xi > βU

(βL − xi)
2 ∗ δ/ideali, xi < βL

ideali = weighti ∗
∑
xi βU = ideali ∗ (1 − β) βL = ideali ∗ (1 + β)

2.1 Minting and burning shells

Whenever a liquidity provider deposits tokens, the pool mints shells, an ERC-20 compliant token. To

withdraw tokens from the pool, the liquidity provider burns shells. The income from trading fees (see

Section 3) will automatically accrue to the holders of shells. Whether depositing or withdrawing, the

percent change in the utility function will equal the percent change in the supply of shells (assuming

1



there are no fees). We can describe this relationship formally based on a transition from an initial

portfolio x0, to a subsequent portfolio, x1:

U(x1) − U(x0)

U(x0)
=
S0 − S1

S0

G(x1) − F (x1) −G(x0) + F (x0)

U(x0)
=
S0 − S1

S0

∆S =
∆G− ∆F

U0
∗ S0

The above equation still requires one more modification. The intent of the loss function, F , is to

penalize an unbalance pool vs. a balanced pool. When a transaction makes a pool more unbalanced,

i.e. ∆F > 0, and there will be slippage. For a deposit, that means fewer shells will be minted. For

a withdrawal, more shells will be burned. For a swap, the price will be less favorable for the trader.

When a transaction makes a pool less unbalanced, ∆F < 0, then there will be anti-slippage. One of

the design goals for this implementation of the Shell Protocol is to offer dynamic liquidity provider

fees. Most if not all existing liquidity pools give all of the anti-slippage to arbitrage traders, people who

rebalance the pool. We want some of the anti-slippage to go to liquidity providers as a dynamic fee.

We can accomplish this by adding a modification to the above equation: if ∆F < 0, we multiply the

loss function by a new parameter, 0 ≤ λ ≤ 1:

∆S =
∆G− λ∆F

U0
∗ S0

With this modification added when a pool becomes more balanced, we ensure that liquidity providers

will ultimately earn λ ∗ 100% of the slippage from transactions that unbalance the pool, even after the

pool has been rebalanced.

3 Halt checks, tuneable parameters and fixed fees

Before we describe and formulate logic for the actual transactions, it is worth explaining a few mis-

cellaneous concepts. First, are the halt checks. We want to ensure that when a stablecoin breaks its

peg, the entire pool will not be drained. If this happens, then liquidity providers would lose all of their

money, even if the broken coin was only 10% of the total by weight. Without a halt check ensuring

the pool cannot be drained of all value, then the pool will become more risky for liquidity providers

the more stablecoins added, the opposite of risk diversification. In order for a transaction to be valid,

a halt check requires that the token balance at the end of a transaction is within a certain threshold:

ideali ∗ (1 − α) ≤ xi ≤ ideali ∗ (1 + α)

This is probably a good opportunity to explain the role of each of the five tuneable parameters set

by the contract owner, such as α:

0 < α < 1: halt boundary

0 < β < 1: slippage boundary

0 < δ: rate of increase for slippage calculation

2



0 < ε < 1: fixed fee

0 < λ < 1: liquidity provider share of anti-slippage

It is worth going into more detail regarding the application of the fixed fee, ε. Any time tokens enter

the pool or leave the pool, the fixed fee is applied. So for a deposit, the fee is applied once, the same

for a withdrawal. But for a swap, tokens simultaneously enter and leave the pool, so the fixed fee must

be applied twice.

4 Adding and removing liquidity

There are two ways to add and remove tokens from the pool, “selective” and “proportional.” For selec-

tive deposits and withdrawals, the user specifies exactly how many of each token to add or remove. The

pool then calculates how many shell tokens to mint or burn. For proportional deposits and withdrwals,

the tokens are added and removed in relative amounts that are proportional to what is already in the

pool.

4.1 Selective deposits and selective withdrawals

For selective deposits, the user inputs how many of each token they want to add to the pool, d =

(d1, d2, ..., dn). To calculate how many shells will be minted, ∆S, we use the following equation:

∆S =
U(x + d) − U(x)

U(x)
∗ S ∗ (1 − ε)

∆S =

∑
di − ∆F

U(x)
∗ S ∗ (1 − ε) OR ∆S =

∑
di − λ∆F

U(x)
∗ S ∗ (1 − ε)

We can easily extend this equation to apply to selective withdrawals, where the user specifies how

many of each token to take out of the pool, w = (w1, w2, ..., wn) and the protocol calculates how

many shells to burn, ∆S:

∆S =
U(x) − U(x−w)

U(x)
∗ S ∗ (1 + ε)

∆S =

∑
wi − ∆F

U(x)
∗ S ∗ (1 + ε) OR ∆S =

∑
wi − λ∆F

U(x)
∗ S ∗ (1 + ε)

4.2 Proportional deposits and proportional withdrawals

For proportional deposits, the user specifies how many tokens they want to withdraw in total,
∑
di,

and the protocol then calculates two things: how many of each individual token to deposit (di) and how

many shells to mint (∆S). By design, a proportional deposit should not create any slippage because

the ratios of tokens before and after the transaction do not change, and hence the pool does not become

more or less unbalanced. Here are the equations:

∆S =

∑
di∑
xi

∗ S ∗ (1 − ε) di =
xi∑
xi

∗
∑

di

3



For proportional withdrawals, the user specifies how many shell tokens to burn, ∆S, and the pool

calculates how many of each token to withdraw, wi. The withdrawal amounts will have the same ratio

to each other as the token balances in the pool. Here is the equation to calculate the withdrawal amounts:

wi =
∆S

S
∗ xi ∗ (1 − ε)

5 Swapping tokens

A swap, where a user trades with the pool to exchange one token for another, can be thought of as an

atomic deposit and withdrawal such that the pool’s utility does not change before or after. The user

deposits token di and withdraws token wj in amounts such that ∆U = 0.

U(x) = U(x + di − wj)

Using this equality as a starting point, we can simplify the relationship between di and wj as follows:

wj = di + F (x) − F (x + di − wj) OR wj = di + λ ∗ [F (x) − F (x + di − wj)]

Unfortunately, these equations do not have a simple analytic solution because F is a quadratic

function that takes as an input the variables we are trying to solve for. Therefore, we devised an

algorithmic approach to iteratively converge on an estimate. The following subsections explain how

this approach works for both origin swaps (user inputs di) and target swaps (user inputs wj).

5.1 Origin swaps

In an origin swap, the user provides the amount of origin tokens they are willing to trade, di, and the

protocol calculates how much of the target token to swap, wj . We execute the following algorithm until

it reaches convergence:

w0 = di

wt+1 = di ∗ (1 − ε) + F (x) − F (x + di ∗ (1 − ε) − wt)

OR

wt+1 = di ∗ (1 − ε) + λ ∗ [F (x) − F (x + di ∗ (1 − ε) − wt)]

Upon completion, we assess a final fee on the target amount: wi = wt ∗ (1 − ε)

5.2 Target swaps

Target swaps are just like origin swaps, except the user specifies how many tokens they want to buy,

wj , and the smart contract calculates how many tokens the user must sell, di. We execute the following

algorithm until it reaches convergence:

d0 = wj

dt+1 = wj ∗ (1 + ε) − F (x) + F (x + wj ∗ (1 + ε) + dt)

OR

dt+1 = wj ∗ (1 + ε) − λ ∗ [F (x) − F (x + wj ∗ (1 + ε) + dt)]

Upon completion, we assess a final fee on the origin amount: di = dt ∗ (1 + ε)

4


	High level description
	Utility function and shell tokens
	Minting and burning shells

	Halt checks, tuneable parameters and fixed fees
	Adding and removing liquidity
	Selective deposits and selective withdrawals
	Proportional deposits and proportional withdrawals

	Swapping tokens
	Origin swaps
	Target swaps


