
Metaswap

Book your 1-Day Security
Spot Check

Date August 2020

Auditors Steve Marx

1 Executive Summary
In August 2020, we conducted a security assessment of the MetaSwap contract
system: a service that aims to aggregate and optimize trades for MetaMask users.

We performed this assessment between August 3rd and August 10th, 2020. The
engagement was conducted primarily by Steve Marx. The total effort expended was 1
person-week.

1.1 Scope

The MetaSwap system consists of several smart contracts and a web service. Our
review focused solely on the smart contracts:

File Name SHA-1 Hash

Constants.sol 7084�b639abd81d�b3a532ee19395878c9a54fc0

IWeth.sol f6c553a4c18b191d22b5a3aaefafc46a947b0850

BOOK NOW

https://pages.consensys.net/diligence-1-day-spot-check

File Name SHA-1 Hash

MetaSwap.sol 6516738189f6f4b6490da347b3151d407ed2b9eb

Spender.sol c1340aaec0be0debb664b00af727fcd2eca958d8

adapters/CommonAdapter.sol c34588f24f6472ea8ab37eb7276d64ae29bd2612

adapters/WethAdapter.sol bf3f0172009ab57896c6ee576116f085c1ca428f

2 Recommendations
2.1 Remove unused imports

Description

@nomiclabs/buidler/console.sol is imported in a few contracts that don’t use its
functionality.

Examples

code/contracts/adapters/WethAdapter.sol:L6

import "@nomiclabs/buidler/console.sol";

code/contracts/MetaSwap.sol:L3

import "@nomiclabs/buidler/console.sol";

Recommendation

Reducing code when possible is always a win. Consider removing these imports.

2.2 Consider using receive() instead of fallback() ✓ Fixed

Resolution

The MetaSwap team decided to intentionally use fallback() to cover cases where
an aggregator might send some data along with ether.

Description

Spender uses a fallback() function to receive ether from trades:

code/contracts/Spender.sol:L12-L13

/// @dev Receives ether from swaps
fallback() external payable {}

If only simple transfers are expected (with no payload), receive() is probably the
more appropriate choice.

Recommendation

Consider using receive() instead.

3 Security Speci�ication
This section describes, from a security perspective, the expected behavior of the
system under audit. It is not a substitute for documentation. The purpose of this
section is to identify speci�ic security properties that were validated by the audit
team.

Actors

The relevant actors are listed below with their respective abilities:

MetaSwap: The MetaSwap team itself has limited administrative capabilities:
They can register new adapters.

They can pause the MetaSwap contract, halting all trading.

Anyone: Any Ethereum address can use the MetaSwap contracts.
Users can execute trades using the MetaSwap contracts as a proxy.

Trust Model

In any smart contract system, it’s important to identify what trust is expected/required
between various actors. For this audit, we established the following trust model:

Out of scope for this audit, users trust the MetaSwap API to provide them with
good trades. They do have the ability to inspect those trades before executing
them, but this is not easy to do manually, so most users need to trust either the
API or the front-end tools they’re using.

The MetaSwap team should not be able to access users’ funds outside of a trade,
and the speci�ic contracts and adapters a user decides to trust should be
immutable once deployed.

It shouldn’t be possible for one user to interfere with another user’s transactions
(except to the extent allowed by the third-party exchanges/aggregators).

4 Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should
be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

4.1 Reentrancy vulnerability in MetaSwap.swap() Major ✓ Fixed

Resolution

This is �ixed in ConsenSys/metaswap-contracts@ 8de01f6 .

Description

MetaSwap.swap() should have a reentrancy guard.

https://github.com/ConsenSys/metaswap-contracts/commit/8de01f6f217ac544632f2af4b5569688fd2938e2

The adapters use this general process:

1. Collect the from token (or ether) from the user.

2. Execute the trade.

3. Transfer the contract’s balance of tokens (from and to) and ether to the user.

If an attacker is able to reenter swap() before step 3, they can execute their own
trade using the same tokens and get all the tokens for themselves.

This is partially mitigated by the check against amountTo in CommonAdapter , but note
that the amountTo typically allows for slippage, so it may still leave room for an
attacker to siphon off some amount while still returning the required minimum to the
user.

code/contracts/adapters/CommonAdapter.sol:L57-L62

// Transfer remaining balance of tokenTo to sender
if (address(tokenTo) != Constants.ETH) {
 uint256 balance = tokenTo.balanceOf(address(this));
 require(balance >= amountTo, "INSUFFICIENT_AMOUNT");
 _transfer(tokenTo, balance, recipient);
} else {

Examples

As an example of how this could be exploited, 0x supports an “EIP1271Wallet”
signature type, which invokes an external contract to check whether a trade is
allowed. A malicious maker might front run the swap to reduce their inventory. This
way, the taker is sending more of the taker asset than necessary to MetaSwap . The
excess can be stolen by the maker during the EIP1271 call.

Recommendation

Use a simple reentrancy guard, such as OpenZeppelin’s ReentrancyGuard to prevent
reentrancy in MetaSwap.swap() . It might seem more obvious to put this check in
Spender.swap() , but the Spender contract intentionally does not use any storage to

avoid interference between different adapters.

4.2 A new malicious adapter can access users’ tokens Medium ✓ Fixed

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/ReentrancyGuard.sol

Resolution

This is �ixed in ConsenSys/metaswap-contracts@ 8de01f6 .

Description

The purpose of the MetaSwap contract is to save users gas costs when dealing with a
number of different aggregators. They can just approve() their tokens to be spent by
MetaSwap (or in a later architecture, the Spender contract). They can then perform

trades with all supported aggregators without having to reapprove anything.

A downside to this design is that a malicious (or buggy) adapter has access to a large
collection of valuable assets. Even a user who has diligently checked all existing
adapter code before interacting with MetaSwap runs the risk of having their funds
intercepted by a new malicious adapter that’s added later.

Recommendation

There are a number of designs that could be used to mitigate this type of attack. After
discussion and iteration with the client team, we settled on a pattern where the
MetaSwap contract is the only contract that receives token approval. It then moves

tokens to the Spender contract before that contract DELEGATECALL s to the appropriate
adapter. In this model, newly added adapters shouldn’t be able to access users’
funds.

4.3 Owner can front-run traders by updating adapters Medium
✓ Fixed

Resolution

This is �ixed in ConsenSys/metaswap-contracts@ 8de01f6 .

Description

https://github.com/ConsenSys/metaswap-contracts/commit/8de01f6f217ac544632f2af4b5569688fd2938e2
https://github.com/ConsenSys/metaswap-contracts/commit/8de01f6f217ac544632f2af4b5569688fd2938e2

MetaSwap owners can front-run users to swap an adapter implementation. This could
be used by a malicious or compromised owner to steal from users.

Because adapters are DELEGATECALL ed, they can modify storage. This means any
adapter can overwrite the logic of another adapter, regardless of what policies are
put in place at the contract level. Users must fully trust every adapter because just
one malicious adapter could change the logic of all other adapters.

Recommendation

At a minimum, disallow modi�ication of existing adapters. Instead, simply add new
adapters and disable the old ones. (They should be deleted, but the aggregator IDs of
deleted adapters should never be reused.)

This is, however, insu�icient. A new malicious adapter could still overwrite the
adapter mapping to modify existing adapters. To fully address this issue, the adapter
registry should be in a separate contract. Through discussion and iteration with the
client team, we settled on the following pattern:

1. MetaSwap contains the adapter registry. It calls into a new Spender contract.

2. The Spender contract has no storage at all and is just used to DELEGATECALL to the
adapter contracts.

4.4 Simplify fee calculation in WethAdapter Minor ✓ Fixed

Resolution

ConsenSys/metaswap-contracts@ 93bf5c6 .

Description

WethAdapter does some arithmetic to keep track of how much ether is being provided
as a fee versus as funds that should be transferred into WETH:

code/contracts/adapters/WethAdapter.sol:L41-L59

https://github.com/ConsenSys/metaswap-contracts/commit/93bf5c657aa3a8957eae20e2a84f5c71e140c47d

// Some aggregators require ETH fees
uint256 fee = msg.value;

if (address(tokenFrom) == Constants.ETH) {
 // If tokenFrom is ETH, msg.value = fee + amountFrom (total fee could be 0)
 require(amountFrom <= fee, "MSG_VAL_INSUFFICIENT");
 fee -= amountFrom;
 // Can't deal with ETH, convert to WETH
 IWETH weth = getWETH();
 weth.deposit{value: amountFrom}();
 _approveSpender(weth, spender, amountFrom);
} else {
 // Otherwise capture tokens from sender
 // tokenFrom.safeTransferFrom(recipient, address(this), amountFrom);
 _approveSpender(tokenFrom, spender, amountFrom);
}

// Perform the swap
aggregator.functionCallWithValue(abi.encodePacked(method, data), fee);

This code can be simpli�ied by using address(this).balance instead.

Recommendation

Consider something like the following code instead:

Aside from being a little simpler, this way of writing the code makes it obvious that
the full balance is being properly consumed. Part is traded, and the rest is sent as a
fee.

4.5 Consider checking adapter existence in MetaSwap Minor
✓ Fixed

if (address(tokenFrom) == Constants.ETH) {
 getWETH().deposit{value: amountFrom}(); // will revert if the contract has an insuffi
 _approveSpender(weth, spender, amountFrom);
} else {
 tokenFrom.safeTransferFrom(recipient, address(this), amountFrom);
 _approveSpender(tokenFrom, spender, amountFrom);
}

// Send the remaining balance as the fee.
aggregator.functionCallWithValue(abi.encodePacked(method, data), address(this).balance);

Resolution

The MetaSwap team found that doing the check in Spender.swap() actually saves
gas, so they’re going to stick with the existing implementation.

Description

MetaSwap doesn’t check that an adapter exists before calling into Spender :

code/contracts/MetaSwap.sol:L87-L100

function swap(
 string calldata aggregatorId,
 IERC20 tokenFrom,
 uint256 amount,
 bytes calldata data
) external payable whenNotPaused nonReentrant {
 Adapter storage adapter = adapters[aggregatorId];

 if (address(tokenFrom) != Constants.ETH) {
 tokenFrom.safeTransferFrom(msg.sender, address(spender), amount);
 }

 spender.swap{value: msg.value}(
 adapter.addr,

Then Spender performs the check and reverts if it receives address(0) .

code/contracts/Spender.sol:L15-L16

function swap(address adapter, bytes calldata data) external payable {
 require(adapter != address(0), "ADAPTER_NOT_SUPPORTED");

It can be di�icult to decide where to put a check like this, especially when the
operation spans multiple contracts. Arguments can be made for either choice (or
even duplicating the check), but as a general rule it’s a good idea to avoid passing
invalid parameters internally. Checking for adapter existence in MetaSwap.swap() is a
natural place to do input validation, and it means Spender can have a simpler model
where it trusts its inputs (which always come from MetaSwap).

Recommendation

Drop the check from Spender.swap() and perform the check instead in MetaSwap.swap() .

5 Second Assessment
We performed a second assessment between October 3rd and October 4th, 2020.
The engagement was conducted primarily by Steve Marx. The total effort expended
was 2 person-days.

This second assessment covered three new features added by the MetaSwap team:

Support for the CHI gas token – This allows users to offset their gas costs by
burning gas tokens. These tokens can come from the user or from tokens that are
owned by the MetaSwap contract itself.

Uniswap Adapter – This adapter allows swaps to be executed via the Uniswap v2
Router directly, rather than going through some other exchange �irst.

Fee collection – FeeCommonAdapter and FeeWethAdapter are fee-collecting versions of
the original CommonAdapter and WethAdapter . They support an extra parameter fee ,
indicating the quantity of the from asset to be sent to a fee wallet.

5.1 Scope for the Second Assessment

The following �iles were in scope for the second assessment:

File Name SHA-1 Hash

MetaSwap.sol
5d66ea56c131b3ad5246e9fc6c126a0b7ba497f
a

adapters/FeeCommonAdapter.so
l

1bb0e2b4f7fca8e0d98113cf152eeb6be4ff13c7

adapters/FeeWethAdapter.sol
f844d9e13bd2cbf52a81ae4637b35f214098f3b
2

adapters/UniswapAdapter.sol d0733f6f4567dc58d3caf4af8875e17824a97f2d

5.2 Security Speci�ication

The security speci�ication hasn’t change much from the original assessment, so
please refer to that. There are two signi�icant changes to the security model: fee
collection and gas token ownership.

In the new code, fees are collected, but these fees can be seen as voluntary from the
perspective of the smart contracts. Users are free to pass any value for the fee

parameter, including 0 to avoid all fees. The assumption is that most users will not
bother to change the fee suggested by the MetaSwap API.

The other signi�icant change is the introduction of the CHI gas token. In particular,
the ability to use gas tokens held by the MetaSwap contract opens a new potential
attack surface. Indeed, we found that an attacker could use contract-held tokens for
other purposes.

6 Second Assessment Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should
be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

6.1 Attacker can abuse gas tokens stored in MetaSwap Major ✓ Fixed

Resolution

This function was removed in ConsenSys/metaswap-contracts@ 75c4454 .

https://github.com/ConsenSys/metaswap-contracts/commit/75c4454b0f75c259a71a471bd8294267e87460a6

Description

MetaSwap.swapUsingGasToken() allows users to make use of gas tokens held by the
MetaSwap contract itself to reduce the gas cost of trades.

This mechanism is unsafe because any tokens held by the contract can be used by an
attacker for other purposes.

Examples

If gas tokens are held by MetaSwap , an attacker can use them all up by performing a
gas-heavy operation via a call to swapUsingGasToken() . For example, an attacker could
create a token called EVIL and establish an ETH/EVIL pair on Uniswap. The
implementation for EVIL’s transfer() or transferFrom() method could do arbitrary gas-
heavy operations. Finally, the attacker can invoke swapUsingGasToken() , using the
Uniswap adapter and ETH/EVIL as the trading pair. When EVIL’s transfer functions are
called, they can consume a large amount of gas. When the operation is complete,
swapUsingGasTokens() will burn as much CHI gas tokens as possible to help offset the

gas use.

An attack could also be made by using an existing token that makes external calls
(e.g. an ERC777 token) or a mechanism in an aggregated exchange that makes
external calls (e.g. wallet signatures in 0x).

Recommendation

The simplest way to avoid this vulnerability is to never transfer CHI gas tokens to
MetaSwap at all. An alternative would be to only allow gas tokens to be used by

approved transactions from the MetaSwap API. A possible mechanism for that would
be to require a signature from the MetaSwap API. If such a signature were only
provided in known-good situations (which are admittedly hard to de�ine), it wouldn’t
be possible for an attacker to misuse the tokens.

7 Third Assessment
We performed a third assessment between November 7th and November 10th, 2020.
The engagement was conducted primarily by Steve Marx. The total expended effort
was 4 person-hours.

This third assessment covered the new FeeDistributor contract, which divides assets
among a number of recipients. It’s used in the MetaSwap system to distribute fees.
Each recipient has a number of “shares”, and assets are divided according to each
recipients portion of share ownership. Potential assets include ether and ERC20-
compatible tokens.

7.1 Scope for the third assessment

The only contract in scope was the FeeDistributor :

Filename SHA-1 Hash

FeeDistributor.sol 23749a338461db92a96ae87a2fd454d1aa0cbb92

7.2 Security Speci�ication

At setup, the FeeDistributor is initialized with a number of recipients, each with a
corresponding number of shares.

Recipients should be able to withdraw their fair share (
<recipient's shares> / <total shares>) of any stored asset at any time.

No recipient should receive more than their fair share of an asset.

8 Third Assessment Recommendations
8.1 Document assumptions about ERC20 tokens

Most ERC20-compatible tokens can be used with the FeeDistributor contract, but it’s
wise to document some assumptions made by the contract:

Token balances will not be too big (relative to the number of shares). Speci�ically,
the total number of token units received by the contract must be able to be
multiplied by the largest share amount held by a recipient.

Token balances will not be too small (relative to share amounts). It’s impossible to
divide a balance of 1 among more than 1 recipient. To be safe, it would be good to
make sure that no one cares about losing less than totalShares token units. For
example, if there are 1,000,000 total shares, an asset like ether would not be a
problem because 1,000,000 wei is a trivial amount.

Token balances will not decrease without an explicit transfer. The contract makes
the assumption that it can always compute the total received tokens by adding
tokenBalance(token) and _totalWithdrawn[token] . This is not the case if the token

balance can be manipulated externally.

8.2 Only allow full withdrawal

The current code has both withdraw() and withdrawAll() . The former allows for a
partial withdrawal. Unless there’s a clear use case for this, we recommend removing
it. Supporting both requires a signi�icant amount of extra code, and it seems likely
that withdraw() will never be used.

8.3 Drop the recipient parameter

Everywhere in the code, the recipient is always msg.sender . The code is simpler if
msg.sender is just used everywhere.

9 Third Assessment Issues
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best
practices or readability. Code maintainers should use their own judgment as to
whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These
should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or
may require certain conditions in order to be exploited. All major issues should
be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be
�ixed.

9.1 Simplify accounting and better handle remainders Minor ✓ Fixed

Resolution

This was �ixed in ConsenSys/metaswap-contracts@ f0a62e5 . The accounting was
reworked according to the recommendation here.

Description

The current code does some fairly complex and redundant calculations during
withdrawal to keep track of various pieces of state. In particular, the pair of
_available[recipient][token] and _totalOnLastUpdate[recipient][token] is di�icult to describe

and reason about.

Recommendation

For a given token and recipient, we recommend instead just tracking how much has
already been withdrawn. The rest can be easily calculated:

function earned(IERC20 token, address recipient) public view returns (uint256) {
 uint256 totalReceived = tokenBalance(token).add(_totalWithdrawn[token]);
 return totalReceived.mul(shares[recipient]).div(totalShares);
}

function available(IERC20 token, address recipient) public view returns (uint256) {
 return earned(token, recipient).sub(_withdrawn[token][recipient]);
}

function withdraw(IERC20[] calldata tokens) external {
 for (uint256 i = 0; i < tokens.length; i++) {
 IERC20 token = tokens[i];
 uint256 amount = available(token, msg.sender);

 _withdrawn[token][msg.sender] += amount;
 _totalWithdrawn[token] += amount;
 _transfer(token, msg.sender, amount);
 }
 emit Withdrawal(tokens, msg.sender);
}

This code is easier to reason about:

It’s easy to see that withdrawn[token][msg.sender] is correct because it’s only
increased when there’s a corresponding transfer.

It’s easy to see that _totalWithdrawn[token] is correct for the same reason.

https://github.com/ConsenSys/metaswap-contracts/commit/f0a62e52ccbbb1beff7ac7e97c3f69d1c8dcedd6

It’s easy to see that earned() is correct under standard assumptions about ERC20
balances.

It’s easy to see that available() is correct, as it’s just the earned amount less the
already-withdrawn amount.

Remainders are better handled. If 1 token unit is available and you own half the
shares, nothing happens on withdrawal, and if there are later 2 token units
available, you can withdraw 1. (Under the previous code, if you tried to withdraw
when 1 token unit was available, you would be unable to withdraw when 2 were
available.)

Appendix 1 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more
clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via
ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team,
and the Reports do not guarantee the security of any particular project. This Report
does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product,
service or other asset. Cryptographic tokens are emergent technologies and carry
with them high levels of technical risk and uncertainty. No Report provides any
warranty or representation to any Third-Party in any respect, including regarding the
bugfree nature of code, the business model or proprietors of any such business
model, and the legal compliance of any such business. No third party should rely on
the Reports in any way, including for the purpose of making any decisions to buy or
sell any token, product, service or other asset. Speci�ically, for the avoidance of
doubt, this Report does not constitute investment advice, is not intended to be relied
upon as investment advice, is not an endorsement of this project or team, and it is
not a guarantee as to the absolute security of the project. CD owes no duty to any
Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created
solely for Clients and published with their consent. The scope of our review is limited
to a review of Solidity code and only the Solidity code we note as being within the
scope of our review within this report. The Solidity language itself remains under
development and is subject to unknown risks and �laws. The review does not extend

Request a Security Review Today
Get in touch with our team to request a quote for a smart contract audit or a 1-day security review.

to the compiler layer, or any other areas beyond Solidity that could present security
risks. Cryptographic tokens are emergent technologies and carry with them high
levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) –
on its website. CD hopes that by making these analyses publicly available, it can help
the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or
other computer links, gain access to web sites operated by persons other than
ConsenSys and CD. Such hyperlinks are provided for your reference and
convenience only, and are the exclusive responsibility of such web sites’ owners. You
agree that ConsenSys and CD are not responsible for the content or operation of
such Web sites, and that ConsenSys and CD shall have no liability to you or any other
person or entity for the use of third party Web sites. Except as described below, a
hyperlink from this web Site to another web site does not imply or mean that
ConsenSys and CD endorses the content on that Web site or the operator or
operations of that site. You are solely responsible for determining the extent to which
you may use any content at any other web sites to which you link from the Reports.
ConsenSys and CD assumes no responsibility for the use of third party software on
the Web Site and shall have no liability whatsoever to any person or entity for the
accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the
date appearing on the Report and is subject to change without notice. Unless
indicated otherwise, by ConsenSys and CD.

CONTACT US

http://localhost:1313/diligence/contact/

A U D I T S

B L O G

T O O L S

R E S E A R C H

A B O U T

C O N TA C T

C A R E E R S

Subscribe to Our Newsletter
Stay up-to-date on our latest offerings, tools,
and the world of blockchain security.

e-mail address

http://localhost:1313/diligence/audits/
http://localhost:1313/diligence/blog/
http://localhost:1313/diligence/tools/
http://localhost:1313/diligence/research/
http://localhost:1313/diligence/about/
http://localhost:1313/diligence/contact/
https://consensys.net/open-roles/?discipline=32525
https://consensys.net/

