w7 MythX

REPORT 5F6C8980492A590019ABC23D

Created Thu Sep 24 2020 11:56:48 GMT+0000 (Coordinated Universal Time)

Number of analyses 30

User mueller.berndt11@gmail.com

REPORT SUMMARY

Analyses ID

64072149-95e1-4d05-81d5-e4208ec04aba

aa0471eb-41a9-425¢-919f-c039e9bec79b

787b5a58-ab84-4997-9769-1a9¢cb250789b

aabc3fc8-e82a-49b4-b7ec-50974c474ba9

0d66d682-635b-4584-9cef-c06f9aebc452

fcb20a27-ea34-4¢2¢-8337-4b6080c86416

23ab2d22-b300-4bc8-92¢4-416d329e1f38

1f29afcc-4cal-44d5-b5bl-el18bafbfelad

cdda6dbe-d81a-44ef-bb74-3aa6875cf4af

c9046ec5-f746-4833-95d3-cf9748f0eaaa

5dace3c5-59¢8-4¢59-837a-23¢372e566f3

3¢3b9416-2983-4992-a084-7a564e270296

6022a28e-9b87-4987-a9d6-dc17290fb2b8

€071d582-e0a5-465¢-b949-4edb02623¢9d

b5723ab5-6725-4541-af0b-f07¢c760417c4

70bf2cfb-9d4c-408f-a452-6a400561d106

€56dd809-edd6-403a-9954-4eb8cb 298588

3656f064-b54a-4a01-ad11-908d3da38blb

2251e105-aced-4¢41-a907-827f212451ec

852fe9ee-1457-4089-b3a2-19874alclf2a

Main source file

contracts/configuration/LendingPoolAddressesProvider.sol

contracts/configuration/LendingPoolAddressesProviderRegistry.sol

contracts/flashloan/base/FlashLoanReceiverBase.sol

contracts/lendingpool/DefaultReservelnterestRateStrategy.sol

contracts/lendingpool/LendingPool.sol

contracts/lendingpool/LendingPoolCollateralManager.sol

contracts/lendingpool/LendingPoolConfigurator.sol

contracts/lendingpool/LendingPoolStorage.sol

contracts/libraries/configuration/ReserveConfiguration.sol

contracts/libraries/configuration/UserConfiguration.sol

contracts/libraries/helpers/Errors.sol

contracts/libraries/helpers /Helpers.sol

contracts/libraries/logic/GenericLogic.sol

contracts/libraries/logic/ReservelLogic.sol

contracts/libraries/logic/ValidationLogic.sol

contracts/libraries/math/MathUtils.sol

math/PercentageMath.sol

contracts/libraries/math/SafeMath.sol

math/WadRayMath.sol

contracts/misc/AaveProtocolTestHelpers.sol

Detected
vulnerabilities

18

22d0c0Oba-6¢b6-4fdf-8fc4-8da514a0led8

bfd056ae-a898-484d-9996-0d6be2220d53

7b69a08c-ed60-46fa-88e6-af537fd929fb

0890c604-4286-4b95-a6ef-1bd45ebbdd69

587fd904-48e8-4f58-a36f-381ae9fb99f1

5e9b5f59-7cbd-4fb7-adb3-f43704ea2a31

4dcb9ffa-3855-4e7d-af3a-584ef34ba7c4

0c813¢52-8d60-46ab-bfca-838632e2f8dd

c735bclc-fada-4e89-9725-ceabbd2138bc

48db364a-404d-4867-afab-71437ab170c0

contracts/misc/Address.sol

contracts/misc/ChainlinkProxyPriceProvider.sol

contracts/misc/IERC20DetailedBytes.sol

misc/SafeERC20.sol

contracts/misc/WalletBalanceProvider.sol

contracts/tokenization/AToken.sol

tokenization/IncentivizedERC20.sol

contracts/tokenization/StableDebtToken.sol

contracts/tokenization/VariableDebtToken.sol

contracts/tokenization/base/DebtTokenBase.sol

59

Analysis 64072149-95e1-4d05-81d5-e4208ec04aba nr MythX

Started

Finished Thu Sep 24 2020 11:58:18 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Configuration/LendingPoolAddressesProvider.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 4
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(0)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {Ownable} from '@openzeppelin/contracts/access/Ownable.sol';

LOW Read of persistent state following external call.

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is untrusted.
SWC-107 Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | } else {

138 | proxy.upgradeToAndCall(newAddress, params);
139 |}

1o |}

Analysis aa@471eb-41a9-425c-919f-c@39e9bec79b nr MythX

Started

Finished Thu Sep 24 2020 11:58:21 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Configuration/LendingPoolAddressesProviderRegistry.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 4
ISSUES

MEDIUM Loop over unbounded data structure.

Gas consumption in function "_addToAddressesProvidersList" in contract "LendingPoolAddressesProviderRegistry" depends on the size of data structures or values that may grow
SWC_ 128 unboundedly. If the data structure grows too large, the gas required to execute the code will exceed the block gas limit, effectively causing a denial-of-service condition. Consider that an
attacker might attempt to cause this condition on purpose.

Source file
contracts/configuration/LendingPoolAddressesProviderRegistry.sol

Locations

75 | **/

76 | function _addToAddressesProvidersList(address provider) internal {
77| for (uint256 i = @; i < addressesProvidersList.length; i++) {

78 | if (addressesProvidersList[i] == provider) {

79 | return;

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/configuration/LendingPoolAddressesProviderRegistry.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {Ownable} from '@openzeppelin/contracts/access/Ownable.sol';

LOW State variable visibility is not set.

It is best practice to set the visibility of state variables explicitly. The default visibility for "addressesProviders" is internal. Other possible visibility settings are public and private.

SWC-108

Source file
contracts/configuration/LendingPoolAddressesProviderRegistry.sol

Locations

15
16 | contract LendingPoolAddressesProviderRegistry is Ownable, ILendingPoolAddressesProviderRegistry {
17 | mapping(address => uint256) addressesProviders;

18 | address[] addressesProvidersList;

LOW State variable visibility is not set.

It is best practice to set the visibility of state variables explicitly. The default visibility for "addressesProvidersList" is internal. Other possible visibility settings are public and private.

SWC-108

Source file
contracts/configuration/LendingPoolAddressesProviderRegistry.sol

Locations

16 | contract LendingPoolAddressesProviderRegistry is Ownable, ILendingPoolAddressesProviderRegistry {
17 | mapping(address => uint256) addressesProviders;

18 | address[] addressesProvidersList;

19
20 | /**
LOW Loop over unbounded data structure.

Gas consumption in function "getAddressesProvidersList" in contract "LendingPoolAddressesProviderRegistry" depends on the size of data structures or values that may grow
SWC-128 unboundedly. If the data structure grows too large, the gas required to execute the code will exceed the block gas limit, effectively causing a denial-of-service condition. Consider that an
attacker might attempt to cause this condition on purpose.

Source file
contracts/configuration/LendingPoolAddressesProviderRegistry.sol

Locations

41 | address[] memory activeProviders = new address[](maxLength);
Y]

43 | for (uint256 i = 0; i < addressesProvidersList.length; i++) {
44 | if (addressesProviders/addressesProviderslist[i]] > @) {

45 | activeProviders[i] = addressesProvidersList[i];

Analysis 787b5a58-ab84-4997-9769-1adch250789b W MythX

Started

Finished Thu Sep 24 2020 11:58:24 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Flashloan/Base/FlashLoanReceiverBase.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 2
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/flashloan/base/FlashLoanReceiverBase.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

LOW Unused state variable "_addressesProvider".
The state variable "_addressesProvider" is declared within the contract "FlashLoanReceiverBase" but its value does not seem to be used anywhere.
SWC-131
Source file

contracts/flashloan/base/FlashLoanReceiverBase.sol

Locations

13 | using SafeMath for uint256;

15 | ILendingPoolAddressesProvider internal _addressesProvider;

17 | constructor(ILendingPoolAddressesProvider provider) public {

Analysis aa5c3fc8-e82a-49b4-b7ec-5b974c474bag o MythX

Started

Finished Thu Sep 24 2020 11:58:29 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Lendingpool/DefaultReserveInterestRateStrategy.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 4
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(@)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/lendingpool/DefaultReserveInterestRateStrategy.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | '} else {

138 | proxy.upgradeToAndCall(newAddress, params);
13 |}

1o |}

Analysis 0d66d682-635b-4584-9cef-c@6f9aebc452 o MythX

Started Thu Sep 24 2020 11:58:50 GMT+0000 (Coordinated Universal Time)
Finished Thu Sep 24 2020 12:44:07 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Lendingpool/LendingPool.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
1 0 5
ISSUES

HIGH The arithmetic operation can overflow.

It is possible to cause an arithmetic overflow. Prevent the overflow by constraining inputs using the require() statement or use the OpenZeppelin SafeMath library for integer arithmetic
SWC-101 operations. Refer to the transaction trace generated for this issue to reproduce the overflow.

Source file
contracts/libraries/math/MathUtils.sol

Locations

5 | }

57

58 | uint256 expMinusOne = exp - 1;
59

60 | uint256 expMinusTwo = exp > 2 7 exp - 2 : 0;

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/lendingpool/LendingPool.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;

3 | pragma experimental ABIEncoderV2;

LOW Requirement violation.

A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).

SWC-123

Source file
contracts/lendingpool/LendingPool.sol

Locations

nl

718 | return (

719 | IERC20(asset).balanceOf(reserve.aTokenAddress),

720 | IERC20(reserve.stableDebtTokenAddress).totalSupply(),

721 | IERC20(reserve.variableDebtTokenAddress).totalSupply(),

LOW Unused function parameter "from".
The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

247

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".
The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".

The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l

Locations

249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

253 |}

Analysis fcb20a27-ea34-4c2c-8337-4b6080c86416 o MythX

Started Thu Sep 24 2020 11:58:50 GMT+0000 (Coordinated Universal Time)
Finished Thu Sep 24 2020 12:44:05 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Lendingpool/LendingPoolCollateralManager.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 6
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/lendingpool/LendingPoolCollateralManager.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file

contracts/libraries/helpers/Helpers.sol

Locations
B |{
24 | return (

75 | DebtTokenBase(reserve.stableDebtTokenAddress).balanceOf (user),
26 | DebtTokenBase(reserve.variableDebtTokenAddress).balanceOf (user)

7|)

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/libraries/helpers/Helpers.sol

Locations

2% | return (
25 | DebtTokenBase(reserve.stableDebtTokenAddress).balanceOf (user),

26 | DebtTokenBase(reserve.variableDebtTokenAddress).balanceOf (user)

7|)
B |}
LOW Unused function parameter "from".
The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

247

28 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".
The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".

The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l

Locations

249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

253 |}

Analysis 23ab2d22-b300-4bc8-92c4-416d329e1f38 o MythX

Started

Finished Thu Sep 24 2020 11:58:49 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Lendingpool/LendingPoolConfigurator.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 18
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;

3 | pragma experimental ABIEncoderV2;

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

600 | **/

601 | function setPoolPause(bool val) external onlyAaveAdmin {
602 | pool.setPause(val);

603 | }

604 | }

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

550 | onlyAaveAdmin

551 | €

552 | pool.setReserveInterestRateStrategyAddress(asset, rateStrategyAddress);
553 | emit ReserveInterestRateStrategyChanged(asset, rateStrategyAddress);

554 |}

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol
Locations

35 | **/

356 | function disableReserveAsCollateral(address asset) external onlyAaveAdmin {
357 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
358

359 | currentConfig.setLtv(0);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol
Locations

369 [**/

370 | function enableReserveStableRate(address asset) external onlyAaveAdmin {

371 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
372

373 | currentConfig.setStableRateBorrowingEnabled(true);

LOW Multiple calls are executed in the same transaction.
This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by amalicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).
Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

318 | **/

319 | function disableBorrowingOnReserve(address asset) external onlyAaveAdmin {
300 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
n

322 | currentConfig.setBorrowingEnabled(false);

LOW Multiple calls are executed in the same transaction.
This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by amalicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).
Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

456 | **/

457 | function unfreezeReserve(address asset) external onlyAaveAdmin {

453 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
459

460 | currentConfig.setFrozen(false);

LOW Multiple calls are executed in the same transaction.
This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by amalicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).
Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

502 | **/

503 | function setlLiquidationThreshold(address asset, uint256 threshold) external onlyAaveAdmin {
504 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);

505

506 | currentConfig.setliquidationThreshold(threshold);

LOW Multiple calls are executed in the same transaction.
This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by amalicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).
Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

383 | **/

384 | function disableReserveStableRate(address asset) external onlyAaveAdmin {

385 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
386

387 | currentConfig.setStableRateBorrowingEnabled(false);

LOW Multiple calls are executed in the same transaction.
This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by amalicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).
Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

397 | **/

308 | function activateReserve(address asset) external onlyAaveAdmin {

399 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
400

401 | currentConfig.setActive(true);

LOW Multiple calls are executed in the same transaction.
This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by amalicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).
Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

517 | **/

518 | function setlLiquidationBonus(address asset, uint256 bonus) external onlyAaveAdmin {
519 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);

520

521 | currentConfig.setliquidationBonus(bonus);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

M |/

443 | function freezeReserve(address asset) external onlyAaveAdmin {

444 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
445

446 | currentConfig.setFrozen(true);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol
Locations

53 | **/

533 | function setReserveDecimals(address asset, uint256 decimals) external onlyAaveAdmin {
534 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);

535

536 | currentConfig.setDecimals(decimals);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol
Locations

a | **/

477 | function setltv(address asset, uint256 ltv) external onlyAaveAdmin {

473 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
474

475 | currentConfig.setLtv(ltv);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

486 | **/

487 | function setReserveFactor(address asset, uint256 reserveFactor) external onlyAaveAdmin {
433 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);

439

490 | currentConfig.setReserveFactor(reserveFactor);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

339 | uint256 liquidationBonus

340 |) external onlyAaveAdmin {

341 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
342

343 | currentConfig.setLtv(ltv);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

303 | onlyAaveAdmin

3 | {

305 | ReserveConfiguration.Map memory currentConfig = pool.getConfiguration(asset);
306

307 | currentConfig.setBorrowingEnabled(true);

LOW Requirement violation.

A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).

SWC-123

Source file
contracts/lendingpool/LendingPoolConfigurator.sol

Locations

197 | function initialize(ILendingPoolAddressesProvider provider) public initializer {
193 | addressesProvider = provider;
199 | pool = ILendingPool(addressesProvider.getlendingPool());

200 | }

Analysis 1f29afcc-4ca@-44d5-b5b1-e18baf5felad o MythX

Started

Finished Thu Sep 24 2020 11:58:54 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Lendingpool/LendingPoolStorage.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 1
ISSUES

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC_ 110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

133 | {

134 | require(

135 | Reservelogic.InterestRateMode.STABLE == Reservelogic.InterestRateMode(interestRateMode) ||
136 | Reservelogic.InterestRateMode.VARIABLE == Reservelogic.InterestRateMode(interestRateMode),

137 | Errors.INVALID_INTEREST_RATE_MODE_SELECTED

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/lendingpool/LendingPoolStorage.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;

4 | import {UserConfiguration} from '../libraries/configuration/UserConfiguration.sol";

Analysis cddabdbe-d81a-44ef-bb74-3aab875cf4af e MythX

Started

Finished Thu Sep 24 2020 11:58:59 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Configuration/ReserveConfiguration.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 1
ISSUES

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC_ 110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

133 | {

134 | require(

135 | Reservelogic.InterestRateMode.STABLE == Reservelogic.InterestRateMode(interestRateMode) ||
136 | Reservelogic.InterestRateMode.VARIABLE == Reservelogic.InterestRateMode(interestRateMode),

137 | Errors.INVALID_INTEREST_RATE_MODE_SELECTED

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/configuration/ReserveConfiguration.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

Analysis c9046ec5-f746-4833-95d3-cf9748f0eaaa ol MythX

Started

Finished Thu Sep 24 2020 11:59:03 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Configuration/UserConfiguration.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 1
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/configuration/UserConfiguration.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

Analysis 5dace3c5-59c8-4c59-837a-23c372e566f3 ol MythX

Started

Finished Thu Sep 24 2020 11:59:05 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Helpers/Errors.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 1
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/helpers/Errors.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

Analysis 3c3b9416-2983-4992-a084-7a564e270296 o MythX

Started

Finished Thu Sep 24 2020 11:59:08 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Helpers/Helpers.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 7
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(@)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/helpers/Helpers.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {DebtTokenBase} from '../../tokenization/base/DebtTokenBase.sol";

LOW Read of persistent state following external call.

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is untrusted.
SWC-107 Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | } else {

133 | proxy.upgradeToAndCall(newAddress, params);
13 |}

o |}

LOW Unused function parameter "from".

The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l

Locations

2147

28 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".
The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.so0l
Locations

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".
The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

253 |}

Analysis 6022a28e-9b87-4987-a9d6-dc17290fb2b8 o MythX

Started

Finished Thu Sep 24 2020 11:59:12 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Logic/Genericlogic.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 1
ISSUES

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC_ 110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

13 | {

134 | require(

135 | Reservelogic.InterestRateMode.STABLE == Reservelogic.InterestRateMode(interestRateMode) ||
136 | Reservelogic.InterestRateMode.VARIABLE == Reservelogic.InterestRateMode(interestRateMode),

137 | Errors.INVALID_INTEREST_RATE_MODE_SELECTED

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/logic/Genericlogic.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;

3 | pragma experimental ABIEncoderV2;

Analysis e@71d582-e0a5-465c-b949-4edb@2623c9d ol MythX

Started

Finished Thu Sep 24 2020 11:59:16 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Logic/Reservelogic.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 1
ISSUES

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC_ 110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

13 | {

134 | require(

135 | Reservelogic.InterestRateMode.STABLE == Reservelogic.InterestRateMode(interestRateMode) ||
136 | Reservelogic.InterestRateMode.VARIABLE == Reservelogic.InterestRateMode(interestRateMode),

137 | Errors.INVALID_INTEREST_RATE_MODE_SELECTED

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

Analysis b5723ab5-6725-4541-af0b-f07c760417c4 W MythX

Started

Finished Thu Sep 24 2020 11:59:21 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Logic/ValidationLogic.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 4
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/logic/ValidationLogic.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;

3 | pragma experimental ABIEncoderV2;

LOW Unused function parameter "from".
The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.sol

Locations

247

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".

The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l
Locations

28 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".
The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

253 |}

Analysis 70bf2cfb-9d4c-408f-a452-6a400561d106 o MythX

Started

Finished Thu Sep 24 2020 11:59:26 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Math/MathUtils.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 1
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/libraries/math/MathUtils.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {SafeMath} from '@openzeppelin/contracts/math/SafeMath.sol';

Analysis e56dd809-edd6-403a-9954-4eb8ch298588 o MythX

Started

Finished Thu Sep 24 2020 11:59:28 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Math/PercentageMath.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 1
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
math/PercentageMath.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {Errors} from '../helpers/Errors.sol’;

Analysis 3656f064-b54a-4a01-ad11-908d3da38b1b W MythX

Started

Finished Thu Sep 24 2020 11:59:30 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Libraries/Math/SafeMath.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low

ISSUES

Analysis 2251e105-ace4-4c41-a907-827f212457Tec ol MythX

Started

Finished Thu Sep 24 2020 11:59:32 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Math/WadRayMath.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 1
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
math/WadRayMath.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {Errors} from '../helpers/Errors.sol’;

Analysis 852fe9ee-1457-4089-b3a2-19874alc1f2a e MythX

Started

Finished Thu Sep 24 2020 11:59:34 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Misc/AaveProtocolTestHelpers.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 4
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(0)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/misc/AaveProtocolTestHelpers.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;

3 | pragma experimental ABIEncoderV2;

LOW Read of persistent state following external call.

The contract account state is accessed after an external call. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is untrusted.
SWC-107 Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | } else {

138 | proxy.upgradeToAndCall(newAddress, params);
139 |}

1o |}

Analysis 22d0c@ba-6ch6-4fdf-8fc4-8da514a01ed8 o MythX

Started

Finished Thu Sep 24 2020 11:59:37 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Misc/Address.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low

ISSUES

Analysis bfdo56ae-a898-484d-9996-0d6be2220d53 o MythX

Started

Finished Thu Sep 24 2020 11:59:39 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Misc/ChainlinkProxyPriceProvider.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 3
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/misc/ChainlinkProxyPriceProvider.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {Ownable} from '@openzeppelin/contracts/access/Ownable.sol';

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/misc/ChainlinkProxyPriceProvider.sol

Locations

80 | // If there is no registered source for the asset, call the fallbackOracle
81 | if (address(source) == address(@)) {

82 | return _fallbackOracle.getAssetPrice(asset);

83 | } else {

8 | int256 price = IChainlinkAggregator(source).latestAnswer();

LOW Requirement violation.

A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).

SWC-123

Source file
contracts/misc/ChainlinkProxyPriceProvider.sol
Locations

8 | // If there is no registered source for the asset, call the fallbackOracle
81 | if (address(source) == address(@)) {

8) | return _fallbackOracle.getAssetPrice(asset);

83 | } else {

84 | int256 price = IChainlinkAggregator(source).latestAnswer();

Analysis 7b69a08c-ed60-46fa-88e6-af537fd929fb o MythX

Started

Finished Thu Sep 24 2020 11:59:41 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Misc/IERC20DetailedBytes.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 1
ISSUES

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/misc/IERC2@0DetailedBytes.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | contract IERC20DetailedBytes {

Analysis 0890c604-4286-4b95-abef-1bd45ebbdd69 o MythX

Started

Finished Thu Sep 24 2020 11:59:43 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Misc/SafeERC20.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low

ISSUES

Analysis 587fd904-4ae8-4f58-a36f-381ae9fh99f1 o MythX

Started

Finished Thu Sep 24 2020 11:59:45 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Misc/WalletBalanceProvider.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 4
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(0)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/misc/WalletBalanceProvider.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {Address} from '@openzeppelin/contracts/utils/Address.sol’;

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | } else {

133 | proxy.upgradeToAndCall(newAddress, params);
13 |}

o |}

Analysis 5e9b5f59-7chd-4fb7-adb3-f43704ea2a3 W MythX

Started Thu Sep 24 2020 12:00:00 GMT+0000 (Coordinated Universal Time)
Finished Thu Sep 24 2020 12:45:27 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Tokenization/AToken.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
4 4 51
ISSUES

HIGH The arithmetic operation can overflow.

It is possible to cause an arithmetic overflow. Prevent the overflow by constraining inputs using the require() statement or use the OpenZeppelin SafeMath library for integer arithmetic
SWC-101 operations. Refer to the transaction trace generated for this issue to reproduce the overflow.

Source file
contracts/libraries/math/MathUtils.sol

Locations

5% |}

57

58 | uint256 expMinusOne = exp - 1;
59

60 | uint256 expMinusTwo = exp > 2 7 exp - 2 : 0;

HIGH The contract delegates execution to another contract with a user-supplied address.

The smart contract delegates execution to a user-supplied address.This could allow an attacker to execute arbitrary code in the context of this contract account and manipulate the state
SWC-112 of the contract account or execute actions on its behalf.

Source file
contracts/lendingpool/LendingPool.sol

Locations

457
458 | //solium-disable-next-line

459 | (bool success, bytes memory result) = collateralManager.delegatecall(
460 | abi.encodeWithSignature(

461 | 'liquidationCall(address,address,address,uint256,bool)",

462 | collateral,

463 | asset,

464 | user,

465 | purchaseAmount,

466 | receiveAToken

467 |)

468 |)i

469 | require(success, Errors.LIQUIDATION_CALL_FAILED);

HIGH The contract delegates execution to another contract with a user-supplied address.

The smart contract delegates execution to a user-supplied address.This could allow an attacker to execute arbitrary code in the context of this contract account and manipulate the state
SWC-112 of the contract account or execute actions on its behalf.

Source file
contracts/lendingpool/LendingPool.sol

Locations

505 | //solium-disable-next-line

506 | (bool success, bytes memory result) = collateralManager.delegatecall(
507 | abi.encodeWithSignature(

508 | 'repayWithCollateral(address,address,address,uint256,address,bytes)",
509 | collateral,

510 | principal,

511 | user,

512 | principalAmount,

513 | receiver,

514 | params
515 |)
516 |):

517 | require(success, Errors.FAILED_REPAY_WITH_COLLATERAL);

HIGH The contract delegates execution to another contract with a user-supplied address.

The smart contract delegates execution to a user-supplied address.This could allow an attacker to execute arbitrary code in the context of this contract account and manipulate the state
SWC-112 of the contract account or execute actions on its behalf.

Source file
contracts/lendingpool/LendingPool.sol

Locations

620
621 | //solium-disable-next-line

622 | (bool success, bytes memory result) = collateralManager.delegatecall(
623 | abi.encodeWithSignature(

624 | 'swaplLiquidity(address,address,address,uint256,bytes)"’,

625 | receiverAddress,

626 | fromAsset,

627 | toAsset,

623 | amountToSwap,

629 | params
630 |)
631 |):

632 | require(success, Errors.FAILED_COLLATERAL_SWAP);

MEDIUM Write to persistent state following external call

The contract account state is accessed after an external call to a user defined address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the
SWC_ 107 callee is untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

53 | }

524

e

25 | _flashLiquidationLocked = false;

5% | }

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC_ 110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/lendingpool/LendingPool.sol

Locations

317 | (uint256 stableDebt, uint256 variableDebt) = Helpers.getUserCurrentDebt(msg.sender, reserve);
318

319 | Reservelogic.InterestRateMode interestRateMode = Reservelogic.InterestRateMode(rateMode);

320

321 | ValidationLogic.validateSwapRateMode(

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC-110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/lendingpool/LendingPool.sol

Locations

N

61 | (uint256 stableDebt, uint256 variableDebt) = Helpers.getUserCurrentDebt(onBehalfOf, reserve);
262

263 | Reservelogic.InterestRateMode interestRateMode = Reservelogic.InterestRateMode(rateMode);

264

265 | //default to max amount

MEDIUM An assertion violation was triggered.

It is possible to trigger an assertion violation. Note that Solidity assert() statements should only be used to check invariants. Review the transaction trace generated for this issue and
SWC-110 either make sure your program logic is correct, or use require() instead of assert() if your goal is to constrain user inputs or enforce preconditions. Remember to validate inputs from both
callers (for instance, via passed arguments) and callees (for instance, via return values).

Source file
contracts/lendingpool/LendingPool.sol
Locations

905 | if (
96 | Reservelogic.InterestRateMode(vars.interestRateMode) == Reservelogic.InterestRateMode.STABLE
97 |) {

993 | currentStableRate = reserve.currentStableBorrowRate;

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/tokenization/AToken.sol
Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {IncentivizedERC20} from './IncentivizedERC20.sol';

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

176 |) external override view returns (uint256) {

177 return

78 | _borrowAllowance| _reserves asset].getDebtTokenAddress(interestRateMode) || fromUser || toUser];

79 |}

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

195 | address debtToken = _reserves[asset].getDebtTokenAddress(interestRateMode);
196

97 | _borrowAllowance|debtToken|msg.sender luser ! = amount;

193 | emit BorrowAllowanceDelegated(asset, msg.sender, user, interestRateMode, amount);

19 |}

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

28 |)i

429

43) | _usersConfig[msg.sender].setUsingAsCollateral(reserve.id, useAsCollateral);
431

43) | if (useAsCollateral) {

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/libraries/configuration/UserConfiguration.sol

Locations

46 |) internal {

47 | self.data =

48 | (self.data & ~(1 << (reservelndex * 2 + 1))) |

49 | (uint256(_usingAsCollateral ? 1 : @) << (reservelndex * 2 + 1));

5 | }

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/libraries/configuration/UserConfiguration.sol

Locations

45 | bool _usingAsCollateral

46 |) internal {

47 | self.data =

48 | (self.data & ~(1 << (reserveIndex * 2 + 1))) |

49 | (uint256(_usingAsCollateral ? 1 : @) << (reserveIndex * 2 + 1));

5 | }

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

950 | function _addReserveTolist(address asset) internal {

951 | bool reserveAlreadyAdded = false;

957 | require(_reservesList.length < MAX_NUMBER_RESERVES, Errors.NO_MORE_RESERVES_ALLOWED);
953 | for (uint256 i = @; i < _reservesList.length; i++)

054 | if (_reserveslList[i] == asset) {

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

956 | }

057 | if (!reserveAlreadyAdded) {

©

58 | _reserves[asset|.id = uint8(_reservesList.length);

©

59 | _reserveslist.push(asset);

%0 |

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

956 | }

957 | if (!reserveAlreadyAdded) {

958 | _reserves|asset].id = uint8(_reservesList.length);

959 | _reservesList.push(asset);

%0 | }

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

957 | if (!reserveAlreadyAdded) {
953 | _reserves[asset].id = uint8(_reservesList.length);

050 | _reserveslList.push(asset);

%0 |
%1 | *
LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

37 |)i

328

329 | reserve.updateState();
330

331 | if (interestRateMode == Reservelogic.InterestRateMode.STABLE) {

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

331 | if (interestRateMode == Reservelogic.InterestRateMode.STABLE) {

33) | //burn stable rate tokens, mint variable rate tokens

333 | IStableDebtToken(reserve.stableDebtTokenAddress).burn(msg.sender, stableDebt);
334 | IVariableDebtToken(reserve.variableDebtTokenAddress).mint(

335 | msg.sender,

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

339 | } else {

349 | //do the opposite

341 | IVariableDebtToken(reserve.variableDebtTokenAddress).burn(
34) | msg.sender,

343 | variableDebt,

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

342 | msg.sender,

343 | variableDebt,

344 | reserve.variableBorrowIndex
35 |)i

346 | IStableDebtToken(reserve.stableDebtTokenAddress).mint(

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

331 | if (interestRateMode == Reservelogic.InterestRateMode.STABLE) {

33) | //burn stable rate tokens, mint variable rate tokens

335 | IStableDebtToken(reserve.stableDebtTokenAddress).burn(msg.sender, stableDebt);
334 | IVariableDebtToken(reserve.variableDebtTokenAddress).mint(

335 | msg.sender,

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

33) | //burn stable rate tokens, mint variable rate tokens

335 | IStableDebtToken(reserve.stableDebtTokenAddress).burn(msg.sender, stableDebt);
334 | IVariableDebtToken(reserve.variableDebtTokenAddress).mint(

335 | msg.sender,

336 | stableDebt,

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol
Locations

335 | msg.sender,

336 | stableDebt,

337 | reserve.variableBorrowIndex
3|)i

339 | } else {

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

339 | } else {

349 | //do the opposite

341 | IVariableDebtToken(reserve.variableDebtTokenAddress).burn(
34) | msg.sender,

343 | variableDebt,

344 | reserve.variableBorrowIndex

35 |)

%6 | IStableDebtToken(reserve.stableDebtTokenAddress).mint(

347 | msg.sender,

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC_ 107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

344 | reserve.variableBorrowIndex

35 |)i

26 | IStableDebtToken(reserve.stableDebtTokenAddress).mint(
347 | msg.sender,

%8 | variableDebt,

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC_ 107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

347 | msg.sender,

38 | variableDebt,

319 | reserve.currentStableBorrowRate
350 |)i

351 [}

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

33) | //burn stable rate tokens, mint variable rate tokens

335 | IStableDebtToken(reserve.stableDebtTokenAddress).burn(msg.sender, stableDebt);
334 | IVariableDebtToken(reserve.variableDebtTokenAddress).mint(

335 | msg.sender,

336 | stableDebt,

337 | reserve.variableBorrowIndex

38 |)

339 | }else {

349 | //do the opposite

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC_ 107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

351 |}

352

355 | reserve.updateInterestRates(asset, reserve.aTokenAddress, 0, 0);
354

35 | emit Swap(asset, msg.sender);

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC_ 107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/lendingpool/LendingPool.sol

Locations

344 | reserve.variableBorrowIndex

35 |);

%6 | IStableDebtToken(reserve.stableDebtTokenAddress) . .mint(
347 | msg.sender,

28 | variableDebt,

349 | reserve.currentStableBorrowRate

350 |);

351 |}

LOW Write to persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file

contracts/lendingpool/LendingPool.sol

Locations
351 |}
352
355 | reserve.updatelnterestRates(asset, reserve.aTokenAddress, 0, 0);

355 | emit Swap(asset, msg.sender);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPool.sol
Locations

419 | Reservelogic.ReserveData storage reserve = _reserves|asset];
420
471 | ValidationLogic.validateSetUseReserveAsCollateral(
422 | reserve,

423 | asset,

424 | _reserves,

42

_usersConfig[msg.sender |,

4% | _reservesList,

477 | _addressesProvider.getPrice0racle()
.|)i

429

430 | _usersConfig[msg.sender].setUsingAsCollateral(reserve.id, useAsCollateral);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPool.sol

Locations

816 |) external override {

817 | _onlyLendingPoolConfigurator();
818 | _reserves|asset]|.init(

819 | aTokenAddress,

820 | stableDebtAddress,

821 | variableDebtAddress,

822 | interestRateStrategyAddress

83 |)i

824 | _addReserveTolist(asset);

85 | }

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPool.sol

Locations

457
458 | //solium-disable-next-line

459 | (bool success, bytes memory result) = collateralManager.delegatecall(
460 | abi.encodeWithSignature(

461 | 'liquidationCall(address,address,address,uint256,bool)",

462 | collateral,

463 | asset,

464 | user,

465 | purchaseAmount,

466 | receiveAToken

467 |)

468 |)i

469 | require(success, Errors.LIQUIDATION_CALL_FAILED);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPool.sol

Locations

505 | //solium-disable-next-line

506 | (bool success, bytes memory result) = collateralManager.delegatecall(
507 | abi.encodeWithSignature(

508 | 'repayWithCollateral(address,address,address,uint256,address,bytes)",
509 | collateral,

510 | principal,

511 | user,

512 | principalAmount,

513 | receiver,

514 | params
515 |)
516 |):

517 | require(success, Errors.FAILED_REPAY_WITH_COLLATERAL);

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPool.sol

Locations

718 | return (

719 | IERC20(asset).balanceOf (reserve.aTokenAddress),

720 | IERC20(reserve.stableDebtTokenAddress).totalSupply(),
721 | IERC20(reserve.variableDebtTokenAddress).totalSupply(),

722 | reserve.currentliquidityRate,

LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/libraries/helpers/Helpers.sol
Locations

% | return (
25 | DebtTokenBase(reserve.stableDebtTokenAddress).balanceOf (user),

26 | DebtTokenBase(reserve.variableDebtTokenAddress).balanceOf(user)

27|
B |}
LOW Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/lendingpool/LendingPool.sol
Locations

620
621 | //solium-disable-next-line

622 | (bool success, bytes memory result) = collateralManager.delegatecall(
623 | abi.encodeWithSignature(

624 | 'swaplLiquidity(address,address,address,uint256,bytes)",

625 | receiverAddress,

626 | fromAsset,

627 | toAsset,

623 | amountToSwap,

629 | params
630 |)
631 |)i

63) | require(success, Errors.FAILED_COLLATERAL_SWAP);

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

86
87 | //solium-disable-next-line

83 | if (timestamp == uint40(block.timestamp)) {

89 | //if the index was updated in the same block, no need to perform any calculation
90 | return reserve.liquidityIndex;

9 |}

92

93 | uint256 cumulated = MathUtils

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/logic/Reservelogic.sol

Locations

109
110 | //solium-disable-next-line

117 | if (timestamp == uint40(block.timestamp)) {

112 | //if the index was updated in the same block, no need to perform any calculation
113 | return reserve.variableBorrowIndex;

[}

15

116 | uint256 cumulated = MathUtils

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC_ 116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
node_modules/@openzeppelin/contracts/math/SafeMath.sol

Locations

5 | */
60 | function sub(uint256 a, uint256 b, string memory errorMessage) internal pure returns (uint256) {
61 | require(b <= a, errorMessage);

62 | uint256 ¢ = a - b;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/MathUtils.sol

Locations

52 | uint256 exp = block.timestamp.sub(uint256(lastUpdateTimestamp));
54 | if (exp == @) {
55 | return WadRayMath.ray();

5% | }

58 | uint256 expMinusOne = exp - 1;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/MathUtils.sol

Locations

58 | uint256 expMinusOne = exp - 1;

59

60 | uint256 expMinusTwo = exp > 2 7 exp - 2 : 0;
61

62 | uint256 ratePerSecond = rate / SECONDS_PER_YEAR;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol

Locations

156 | function wadToRay(uint256 a) internal pure returns (uint256) {

157 | uint256 result = a * WAD_RAY_RATIO;

153 | require(result / WAD_RAY_RATIO == a, Errors.MULTIPLICATION_OVERFLOW);
159 | return result;

160 | }

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
node_modules/@openzeppelin/contracts/math/SafeMath.sol

Locations

79 | // benefit is lost if 'b' is also tested.
80 | // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522

81 | if (@ ==0) {

8 | return @;
8 |}
8

85 | uint256 ¢ = a * b;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
node_modules/@openzeppelin/contracts/math/SafeMath.sol

Locations

8

85 | uint256 ¢ = a * b;

8 | require(c / a == b, "SafeMath: multiplication overflow");
87

88 | return c;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
node_modules/@openzeppelin/contracts/math/SafeMath.sol
Locations

8

8 | uint256 ¢ = a * b;

8 | require(c / a == b, "SafeMath: multiplication overflow");
87

88 | return c;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol

Locations

27 | uint256 result = a * RAY;

128

29 | require(result / RAY == a, Errors.MULTIPLICATION_OVERFLOW);

130

31 | result += halfB;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol
Locations

31 | result += halfB;

132

35 | require(result >= halfB, Errors.ADDITION_OVERFLOW);

35 | return result / b;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
node_modules/@openzeppelin/contracts/math/SafeMath.sol
Locations

29 | function add(uint256 a, uint256 b) internal pure returns (uint256) {
30 | uint256 ¢ = a + b;

31 | require(c >= a, "SafeMath: addition overflow");

33 | return c;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol

Locations

99 [**/

100 | function rayMul(uint256 a, uint256 b) internal pure returns (uint256) {
101 | if (a==0) {

102 | return @;

103 | }

105 | uint256 result = a * b;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol
Locations

05 | uint256 result = a * b;

106

07 | require(result / a == b, Errors.MULTIPLICATION_OVERFLOW);

108

09 | result += halfRAY;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol
Locations

05 | uint256 result = a * b;

106

07 | require(result / a == b, Errors.MULTIPLICATION_OVERFLOW);

108

09 | result += halfRAY;

LOW A control flow decision is made based on The block.timestamp environment variable.

The block.timestamp environment variable is used to determine a control flow decision. Note that the values of variables like coinbase, gaslimit, block number and timestamp are
SWC-116 predictable and can be manipulated by a malicious miner. Also keep in mind that attackers know hashes of earlier blocks. Don't use any of those environment variables as sources of
randomness and be aware that use of these variables introduces a certain level of trust into miners.

Source file
contracts/libraries/math/WadRayMath.sol

Locations

109 | result += halfRAY;

110

11 | require(result >= halfRAY, Errors.ADDITION_OVERFLOW);

12

13 | return result / RAY;

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/lendingpool/LendingPool.sol
Locations

nl

718 | return (

719 | IERC20(asset).balanceOf(reserve.aTokenAddress),

720 | IERC20(reserve.stableDebtTokenAddress).totalSupply(),

721 | IERC20(reserve.variableDebtTokenAddress).totalSupply(),

LOW Unused function parameter "from".
The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

247

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".

The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l

Locations

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".
The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

253 |}

Analysis 4dcb9ffa-3855-4e7d-af3a-584ef34ba7cs ol MythX

Started

Finished Thu Sep 24 2020 11:59:58 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Tokenization/IncentivizedERC20.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 0 3
ISSUES
LOW Unused function parameter "from".
The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

tokenization/IncentivizedERC20.s0l

Locations

247

243 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".
The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

tokenization/IncentivizedERC20.s0l

Locations

243 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

LOW Unused function parameter "amount".

The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
tokenization/IncentivizedERC20.s0l

Locations

249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

253 |}

Analysis 0c813c52-8d60-46ab-bfca-838632e2f8dd ol MythX

Started

Finished Thu Sep 24 2020 12:00:01 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Tokenization/StableDebtToken.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
1 0 6
ISSUES

HIGH The arithmetic operation can overflow.

It is possible to cause an arithmetic overflow. Prevent the overflow by constraining inputs using the require() statement or use the OpenZeppelin SafeMath library for integer arithmetic
SWC-101 operations. Refer to the transaction trace generated for this issue to reproduce the overflow.

Source file
contracts/libraries/math/MathUtils.sol

Locations

5% |}

57

58 | uint256 expMinusOne = exp - 1;
59

60 | uint256 expMinusTwo = exp > 2 7 exp - 2 : 0;

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/tokenization/StableDebtToken.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {Context} from '@openzeppelin/contracts/GSN/Context.sol';

LOW State variable visibility is not set.

It is best practice to set the visibility of state variables explicitly. The default visibility for "_timestamps" is internal. Other possible visibility settings are public and private.

SWC-108

Source file
contracts/tokenization/StableDebtToken.sol

Locations

22 | uint256 private _avgStableRate;
23 | mapping(address => uint40) _timestamps;

24 | uint40 _totalSupplyTimestamp;

LOW State variable visibility is not set.

It is best practice to set the visibility of state variables explicitly. The default visibility for "_totalSupplyTimestamp" is internal. Other possible visibility settings are public and private.

SWC-108

Source file
contracts/tokenization/StableDebtToken.sol

Locations
22 | uint256 private _avgStableRate;
23 | mapping(address => uint40) _timestamps;

24 | uint40 _totalSupplyTimestamp;

26 | constructor(

LOW Unused function parameter "from".
The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.sol

Locations

247

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".

The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.sol

Locations

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

LOW Unused function parameter "amount".
The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

249 | address from,

250 | address to,

251 | uint256 amount

252 |) internal virtual {}

253 |}

Analysis c735bc1c-fada-4e89-9725-ceabbd2138bc ol MythX

Started

Finished Thu Sep 24 2020 12:00:06 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Tokenization/VariableDebtToken.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 7
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(0)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""*0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC_ 103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/tokenization/VariableDebtToken.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0

2 | pragma solidity "0.6.8;

4 | import {Context} from '@openzeppelin/contracts/GSN/Context.sol";

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | '} else {

133 | proxy.upgradeToAndCall(newAddress, params);
139 |}

o |}

LOW Unused function parameter "from".

The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l

Locations

247

28 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".
The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

28 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".
The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

253 |}

Analysis 48db364a-404d-4867-afab-71437ab170c0 W MythX

Started

Finished Thu Sep 24 2020 12:00:14 GMT+0000 (Coordinated Universal Time)
Mode

Client Tool Mythx-Cli-0.6.21

Main Source File Contracts/Tokenization/Base/DebtTokenBase.Sol

DETECTED VULNERABILITIES

(HIGH (MEDIUM (Low
0 1 7
ISSUES

MEDIUM Multiple calls are executed in the same transaction.

This call is executed following another call within the same transaction. It is possible that the call never gets executed if a prior call fails permanently. This might be caused intentionally
SWC-113 by a malicious callee. If possible, refactor the code such that each transaction only executes one external call or make sure that all callees can be trusted (i.e. they're part of your own
codebase).

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

132 | if (proxyAddress == address(0)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW A floating pragma is set.

The current pragma Solidity directive is ""#0.6.8"". It is recommended to specify a fixed compiler version to ensure that the bytecode produced does not vary between builds. This is
SWC-103 especially important if you rely on bytecode-level verification of the code.

Source file
contracts/tokenization/base/DebtTokenBase.sol

Locations

1 | // SPDX-License-Identifier: agpl-3.0
2 | pragma solidity "0.6.8;
3

4 | import {Context} from '@openzeppelin/contracts/GSN/Context.sol";

LOW Read of persistent state following external call

The contract account state is accessed after an external call to a fixed address. To prevent reentrancy issues, consider accessing the state only before the call, especially if the callee is
SWC-107 untrusted. Alternatively, a reentrancy lock can be used to prevent untrusted callees from re-entering the contract in an intermediate state.

Source file
contracts/configuration/LendingPoolAddressesProvider.sol

Locations

133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

137 | } else {
LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

132 | if (proxyAddress == address(®)) {
133 | proxy = new InitializableAdminUpgradeabilityProxy();
134 | proxy.initialize(newAddress, address(this), params);
135 | _addresses[id] = address(proxy);

136 | emit ProxyCreated(id, address(proxy));

LOW Requirement violation.
A requirement was violated in a nested call and the call was reverted as a result. Make sure valid inputs are provided to the nested call (for instance, via passed arguments).
SWC-123
Source file

contracts/configuration/LendingPoolAddressesProvider.sol
Locations

136 | emit ProxyCreated(id, address(proxy));

137 | } else {

133 | proxy.upgradeToAndCall(newAddress, params);
13 |}

o |}

LOW Unused function parameter "from".

The value of the function parameter "from" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".

SWC-131

Source file
contracts/tokenization/IncentivizedERC20.s0l

Locations

2147

28 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

LOW Unused function parameter "to".
The value of the function parameter "to" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

248 | function _beforeTokenTransfer(
249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

LOW Unused function parameter "amount".
The value of the function parameter "amount" for the function "_beforeTokenTransfer" of contract "IncentivizedERC20" does not seem to be used anywhere in "_beforeTokenTransfer".
SWC-131
Source file

contracts/tokenization/IncentivizedERC20.s0l
Locations

249 | address from,

250 | address to,

251 | uint256 amount

25 |) internal virtual {}

253 |}

