
dForce Lending Protocol Review
Consensys Diligence

Date March 2021

Lead Auditor Alexander Wade

Co-auditors Heiko Fisch

1 Executive Summary
From March to April 2021, ConsenSys Diligence engaged with dForce to review the dForce Lending Protocol: a pool-based
lending platform and stable debt protocol.

We conducted this assessment from March 8 to April 9, 2021, and allocated 8 person-weeks over that period.

1.1 Scope

Our review focused on the commit hash 419c2a1e00a74a0590a2e05a959a7c053de4181c .

For the most part, the Solidity �iles at the given commit were in scope. However, one major component was NOT in scope: the pricing oracle implementation,
PriceOracle.sol .

A complete list of �iles in scope can be found in the Appendix.

2 Security Speci�ication
This section outlines the system’s primary actors and roles, and describes some of the risks inherent to the protocol.

2.1 Actors

The system’s non-user roles are summarized below with their respective abilities. This is not an exhaustive list; consult dForce’s documentation for more
information.

Note that the Owner role is present in most of the system’s components. Although this role is con�igurable on a per-component basis, this section lists the Owner
as a single actor for simplicity. We have con�irmed with dForce that the role is intended to be held by a single account.

Owner: The Owner acts as the system administrator, and has a broad range of permissions that allow them to con�igure many parts of the system.
Upgrade management: The Owner may upgrade most of the system’s components.

By changing the implementation address used by those components’ proxy contracts, the Owner may completely change the logic used for the
following contracts: Controller , MSDController , RewardDistributor , MSD , iToken , iETH , iMSD , and MSDS .

By updating system-wide variables, the Owner may completely change the logic used for the following contracts: PriceOracle and RewardDistributor .

Interest rate con�iguration: The Owner may adjust parameters for many features of the system, including interest rate calculations, borrow rates, supply
rates, and more.

iToken con�iguration: The Owner may list new iTokens and de�ine their initial con�iguration. The Owner may also update this con�iguration at any time.
Con�igurable parameters include:

Collateral factor: The ratio of a user’s collateral that can be borrowed against.

Borrow factor: A multiplier on the value of a user’s borrowed assets. A higher borrowed asset value will restrict the amount that can be borrowed.

Borrow capacity: A limit on the amount of underlying assets that may be borrowed.

Supply capacity: A limit on the amount of underlying assets that may be deposited.

Liquidation con�iguration: The Owner may update the close factor, which determines the ratio of borrowed assets a liquidator may repay during
liquidation. Also, the Owner may update the liquidation incentive, which acts as a multiplier on the assets used to repay a borrower’s position.

Withdrawal of iToken reserves: The Owner may withdraw a portion of any iToken’s underlying asset. This portion is determined by the iToken’s reserve
ratio, which may also be con�igured by the Owner.

Withdrawal of MSD reserves: The Owner may mint themselves MSD tokens according to the relative levels of debt and equity in the MSD asset. Debt and
equity are calculated using the asset’s supply rate and borrow rate, both of which may be updated by the Owner.

Pause and unpause: The Owner may pause and unpause the protocol inde�initely. Additionally, the Owner may pause and unpause individual features on
speci�ic assets supported by the protocol. Essentially, the Owner has all the permissions of the Pause Guardian (see below), but may also unpause
features.

Pause Guardian: The Pause Guardian is able to pause the protocol as a whole, as well as individual features, or individual assets. Only the Owner may
unpause things.

Pause features for speci�ic iTokens:
Pause mints: Pause minting actions on a given iToken.

Pause redeems: Pause redemptions for an iToken’s underlying assets. This applies to both redeem and redeemUnderlying .

Pause borrows: Pause borrows on a given iToken.

Pause features globally:
Pause seizes: Pause all liquidation actions. This applies to both liquidateBorrow and seize .

Pause transfers: Pause all token transfers. This applies to transfer and transferFrom for all supported iTokens.

2.2 Risks

This section describes some of the risks inherent to the dForce lending protocol.

System Owner role may be a single point of failure. The Owner role has permissions to execute a wide variety of actions in virtually every component of the
system. The breadth and depth of the authority held by the Owner makes this role a target for attack by both malicious insiders and external parties. In the
event the Owner role is compromised, an attacker would easily be able to drain user funds.

https://github.com/dforce-network/LendingContracts/commit/419c2a1e00a74a0590a2e05a959a7c053de4181c

Note: dForce informed us that they intend to transfer the Owner role to a multisig or DAO at some point in the future.

Unpredictability due to front running or timing. Actions taken by the Owner role do not come with a delay. From a user’s perspective, upgrades and updates
may come without warning. This means that the Owner could use front running to make malicious changes just ahead of incoming transactions.
Alternatively, well intentioned changes may result in negative effects for users due to unfortunate timing.

For example, the Owner may choose to update the collateral factor for an iToken. Whether intentionally or not, this update may be performed just prior to a
user’s “borrow” transaction, and may result in their taking a position with less collateral value than expected. This example may be extended to every Owner
permission outlined above (see: 2.1 Actors).

In general, users of the system can’t be sure what the behavior of a function call will be, because behavior can change at any time.

There are two broad strategies for addressing this:

Let the user lock things down from changing. For example, allow them to specify what version of a module or contract they expect, and if that version is
no longer current, revert.

Use a time lock to give users advance notice of changes. For example, ensure that upgrades and updates require two steps with a mandatory delay
between them. This ensures that changes to system con�iguration are broadcasted well in advance, and allows users to react in time.

Some loans can’t be liquidated with a pro�it. Loans that become under-collateralized, which usually happens as a result of price movements, can be partially
liquidated. That means a liquidator can repay a fraction of the loan and gets an equivalent part of the loan’s collateral in return, plus a reward for their
service. More speci�ically, the globally set closeFactor determines the maximum fraction of a loan that can be liquidated, and the amount of collateral given to
the liquidator is liquidationIncentive * v , where liquidationIncentive is also globally set and v denotes the current value of the repaid amount.

Executing a liquidation requires a considerable amount of gas; how much exactly depends on several factors, most notably the number of loans taken and
the number of assets used as collateral. (See also issue 4.3.) For a particular liquidation to be pro�itable, the money spent on gas plus the value v of the
repaid amount must be smaller than liquidationIncentive * v . Since v can’t be greater than collateralFactor * l , where l denotes the value of the loan, a
liquidator must spend less than collateralFactor * l * (liquidationIncentive - 1) to be pro�itable. If, for example, we assume collateralFactor = 0.5 ,
liquidationIncentive = 1.05 and a loan worth $4000, the maximum liquidation amount is $2000 and the liquidator’s budget for gas is $100.

Given that liquidations are (or can be) quite expensive in terms of gas consumption, in times of high gas prices even fairly sizable loans, possibly worth
several thousand dollars, can’t be liquidated with a pro�it. From a borrower’s perspective, this means that relatively large loans can be taken that will only be
liquidated if someone is willing to take a loss. To make things worse, a borrower can drive up the amount of gas needed for a liquidation of their loan by
adding more collateral and/or borrow positions with possibly small value.

Possible mitigations include increasing the parameters closeFactor and/or liquidationIncentive , which can be done by the Owner. However, this affects all under-
collateralized loans, also ones that could be liquidated with a pro�it even without the parameter change. So it might be worth integrating a rising closeFactor

and/or liquidationIncentive for smaller loans into the protocol; this also eliminates the need for an Owner intervention and makes the system’s behavior
therefore more predictable.
Nevertheless, these measures can only be a mitigation, not a complete solution; they “move the numbers” but, fundamentally, the problem remains: If the
collateral is not even su�icient to cover the gas costs of a liquidation, no parameter adjustments can help.

We discussed this with dForce, and their plan (apart from possible parameter changes) is to liquidate any such position themselves and take the loss. If there
aren’t too many of these loans, that will probably work; in fact, the very announcement to do so might actually prevent that a substantial amount of such
loans is taken in the �irst place because their appeal would lie in a low(er) risk of being liquidated in case of under-collateralization. On the other hand, if a
huge amount of such loans is taken nevertheless — for example because many users believe dForce won’t or won’t even be able to follow through with
liquidating all of them — that could become a self-ful�illing prophecy, leading to many under-collateralized loans in the system that no one is willing to
liquidate.

We would therefore recommend investigating modi�ications of the system to more robustly deal with situations as outlined above, although that might prove
to be a challenging task. Possible building blocks could be close factors and liquidation incentives that dynamically adapt to the loan size, as outlined above.
In addition to that, it would probably be necessary to prevent “small” loans (or positions in general), both initially and as a result of other operations on a
bigger loan. Situations as described in the next item might add further complications.

Risk of uncollateralized loans after a �lash crash. As already mentioned above, under-collateralized loans can only be liquidated partially. Normally, such a
partial liquidation brings the remaining loan back in — or at least closer to — the su�iciently collateralized range, i.e. the collateral / debt ratio is greater than
it was before the liquidation. However, there are situations in which a partial liquidation decreases the collateral / debt ratio, for example if, even before the
liquidation, the debt exceeds the collateral. While that’s precisely the situation liquidations try to avoid in the �irst place, it might happen nevertheless, for
example if the collateral price falls very quickly. Since a liquidation at this point decreases the collateral / debt ratio, the remaining loan can immediately be
liquidated again, further decreasing said ratio, and so on. In the end, all or most of the collateral will be gone, but some of the loan will not have been repaid
— and no one has an incentive to change that. Moreover, this essentially uncollateralized loan will accrue interest and grow.

The dForce team had already been aware of this and informed us that they’re willing to repay such loans in order to keep the system healthy. While this is
clearly not an ideal solution, this issue seems to be inherent to the fundamental system design, and it seems unlikely that it can be avoided completely.

3 Recommendations
3.1 Ensure users have a clear understanding of what “Collateral” means

Description

Traditionally, collateral refers to: “an asset pledged as security for the repayment of a loan, to be forfeited in the event of a default.”

Using dForce, users may deposit assets into the system and borrow assets from the system. When borrowing assets, the system calculates the amount that can
be borrowed as a function of the value of the user’s collateral. Users must explicitly mark deposited assets as collateral via the Controller.enterMarkets method,
which adds the asset to the user’s “collaterals” list:

code/contracts/Controller.sol:L1397-L1409

function _enterMarket(address _iToken, address _account)
 internal
 returns (bool)
{
 // Market not listed, skip it
 if (!iTokens.contains(_iToken)) {
 return false;
 }

 // add() will return false if iToken is in account's market list
 if (accountsData[_account].collaterals.add(_iToken)) {
 emit MarketEntered(_iToken, _account);
 }

Users may deposit and hold assets without marking them as collateral via this method. Using the traditional de�inition of “collateral,” a user may expect that
assets not marked as collateral cannot be seized in the event they default on a loan. However, this is not the case: ANY asset deposited by the user can be seized
during liquidation, regardless of whether it was marked collateral or not.

Recommendation

Given this subversion of expectations, we recommend ensuring that dForce’s users have a clear understanding of their risks and responsibilities when they
deposit assets into the lending platform.

Consider revisiting the term “collateral” to apply to all assets deposited into the system.

Consider creating user-facing documentation that clearly outlines the meaning of the term.

3.2 Short-circuit Base._updateInterest by returning early if accrualBlockNumber == block.number

Resolution

This recommendation was implemented in commit 37205c6 .

Description

Base._updateInterest is executed before most operations in the dForce system. The method accumulates interest from borrows since the last time the method was
called, and adds a portion to the contract’s reserves. It then updates these values in contract state, ensuring the action being taken is using the most up-to-date
values:

code/contracts/TokenBase/Base.sol:L140-L144

// Writes the previously calculated values into storage.
accrualBlockNumber = _vars.currentBlockNumber;
borrowIndex = _vars.newBorrowIndex;
totalBorrows = _vars.newTotalBorrows;
totalReserves = _vars.newTotalReserves;

_updateInterest is relatively long, and will likely be called several times per block. In this case, the blockDelta used to calculate accumulated interest will result in a
calculated value of “0” interest accumulated:

code/contracts/TokenBase/Base.sol:L109-L126

// Records the current block number.
_vars.currentBlockNumber = block.number;

// Calculates the number of blocks elapsed since the last accrual.
_vars.blockDelta = _vars.currentBlockNumber.sub(accrualBlockNumber);

/**
 * Calculates the interest accumulated into borrows and reserves and the new index:
 * simpleInterestFactor = borrowRate * blockDelta
 * interestAccumulated = simpleInterestFactor * totalBorrows
 * newTotalBorrows = interestAccumulated + totalBorrows
 * newTotalReserves = interestAccumulated * reserveFactor + totalReserves
 * newBorrowIndex = simpleInterestFactor * borrowIndex + borrowIndex
 */
_vars.simpleInterestFactor = _vars.borrowRate.mul(_vars.blockDelta);
_vars.interestAccumulated = _vars.simpleInterestFactor.rmul(
 _vars.totalBorrows
);

When no interest has been accumulated, the method’s state changes have no net effect.

Recommendation

In order to save gas on repeated calls in the same block, _updateInterest should return early if accrualBlockNumber == block.number .
Note that the function currently emits an UpdateInterest event even if this is not the �irst call in this block. It might be worth mentioning that returning early if
accrualBlockNumber == block.number will change that behavior — which is probably a good thing since nothing has been updated anyway.

3.3 Plan and test the Owner in real-world scenarios, including an eventual transition to a smart contract

Description

issue 4.5 describes a requirement in RewardDistributor that con�licts with dForce’s plans to transition the Owner role to a smart contract. This �inding suggests that
this eventual transition has not been su�iciently planned, and is wholly untested.

Given that this is an important milestone for the protocol, it is important to plan for its execution well in advance. Whether the Owner role will be held by an EOA,
a multisig, or a DAO, the capabilities of the Owner are very important to the system as a whole.

https://github.com/dforce-network/LendingContracts/commit/37205c620894a7fee717ffcb1777548f43dcff67

Examples

The following examples outline some basic design considerations dForce should plan for now, ahead of this eventual transition:

The Owner needs to be able to execute multiple actions atomically. This is primarily important because there will be situations where multiple function calls
are required to safely carry out a change.

For example, in the event the MSDController needs to be updated, calls to iMSD._setMSDController and MSDS._setMSDController need to happen atomically. Without
atomic execution of both methods, a window of time exists where transactions may interact with one or both of these contracts in a half-con�igured
state.

As another example, if an InterestRateModel is found to be faulty, a complete upgrade requires calling each iToken individually (iToken._setInterestRateModel).

Owner actions should be timelocked, in order to remove unpredictability for users. As explained in 2.2 Risks, instant con�iguration changes mean users
cannot be sure what the behavior of a function call will be, as this behavior can change at any time. Transitioning the Owner role to a smart contract enables
the possibility of implementing time-locked actions, where a mandatory delay ensures users are able to react to pending Owner actions in time.

Recommendation

Extend current testing of the Owner role with tests where the Owner is replaced by a smart contract, preferably one capable of batching actions.

Come up with real-world scenarios where Owner actions are needed, then test these scenarios. An easy way to come up with these scenarios is to consider
cases where a bug is discovered in one or more of the system’s components. What actions should the Owner take in these scenarios? Can those actions be
taken safely using both an EOA and a smart contract?

3.4 Avoid code duplication

Description

There are several instances of duplicated code throughout the codebase. This should generally be avoided as it reduces maintainability and readability of the
source code, increases source code length, and might increase bytecode length.

Examples

1. There are four interest rate models; three of them employ the asset’s utilization rate and de�ine the exact same function for its computation. In issue 4.3, we
suggest modi�ications to this function; currently, they would have to be applied to all three instances of this code.

2. All four models contain the following function, which —although trivial and unlikely to change — would better be placed in a base contract all interest rate
models inherit from:

code/contracts/InterestRateModel/InterestRateModel.sol:L65-L70

/**
 * @notice Ensure this is an interest rate model contract.
 */
function isInterestRateModel() external pure returns (bool) {
 return true;
}

Recommendation

Well-known techniques like inheritance and use of libraries help avoid code duplication.

4 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers should use their own judgment as
to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be exploited. All major issues should
be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

4.1 iETH.exchangeRateStored may not be accurate when invoked from external contracts Major

Resolution

This issue was addressed in commit 9876e3a by using a modi�ier to track the current msg.value of payable functions.

Description

iETH.exchangeRateStored returns the exchange rate of the contract as a function of the current cash of the contract. In the case of iETH , current cash is calculated as
the contract’s ETH balance minus msg.value :

code/contracts/iETH.sol:L54-L59

/**
 * @dev Gets balance of this contract in terms of the underlying
 */
function _getCurrentCash() internal view override returns (uint256) {
 return address(this).balance.sub(msg.value);
}

msg.value is subtracted because the majority of iETH methods are payable, and msg.value is implicitly added to a contract’s balance before execution begins. If
msg.value were not subtracted, the value sent with a call could be used to in�late the contract’s exchange rate arti�icially.

https://github.com/dforce-network/LendingContracts/commit/9876e3a111fbdb78d2ba054542d52133ab6992e5

As part of execution, iETH makes calls to the Controller , which performs important checks using (among other things) the stored exchange rate. When
exchangeRateStored is invoked from the Controller , the call context has a msg.value of 0. However, the msg.value sent by the initial iETH execution is still included in the

contract’s balance. This means that the Controller receives an exchange rate in�lated by the initial call’s msg.value .

Examples

This problem occurs in multiple locations in the Controller :

beforeMint uses the exchange rate to ensure the supply capacity of the market is not reached. In this case, in�lation would prevent the entire supply capacity
of the market from being utilized:

code/contracts/Controller.sol:L670-L678

// Check the iToken's supply capacity, -1 means no limit
uint256 _totalSupplyUnderlying =
 IERC20Upgradeable(_iToken).totalSupply().rmul(
 IiToken(_iToken).exchangeRateStored()
);
require(
 _totalSupplyUnderlying.add(_mintAmount) <= _market.supplyCapacity,
 "Token supply capacity reached"
);

beforeLiquidateBorrow uses the exchange rate via calcAccountEquity to calculate the value of the borrower’s collateral. In this case, in�lation would increase the
account’s equity, which could prevent the liquidator from liquidating:

code/contracts/Controller.sol:L917-L919

(, uint256 _shortfall, ,) = calcAccountEquity(_borrower);

require(_shortfall > 0, "Account does not have shortfall");

Recommendation

Rather than having the Controller query the iETH.exchangeRateStored , the exchange rate could be passed-in to Controller methods as a parameter.

Ensure no other components in the system rely on iETH.exchangeRateStored after being called from iETH .

4.2 Unbounded loop in Controller.calcAccountEquity allows DoS on liquidation Major

Description

Controller.calcAccountEquity calculates the relative value of a user’s supplied collateral and their active borrow positions. Users may mark an arbitrary number of
assets as collateral, and may borrow from an arbitrary number of assets. In order to calculate the value of both of these positions, this method performs two
loops.

First, to calculate the sum of the value of a user’s collateral:

code/contracts/Controller.sol:L1227-L1233

// Calculate value of all collaterals
// collateralValuePerToken = underlyingPrice * exchangeRate * collateralFactor
// collateralValue = balance * collateralValuePerToken
// sumCollateral += collateralValue
uint256 _len = _accountData.collaterals.length();
for (uint256 i = 0; i < _len; i++) {
 IiToken _token = IiToken(_accountData.collaterals.at(i));

Second, to calculate the sum of the value of a user’s borrow positions:

code/contracts/Controller.sol:L1263-L1268

// Calculate all borrowed value
// borrowValue = underlyingPrice * underlyingBorrowed / borrowFactor
// sumBorrowed += borrowValue
_len = _accountData.borrowed.length();
for (uint256 i = 0; i < _len; i++) {
 IiToken _token = IiToken(_accountData.borrowed.at(i));

From dForce, we learned that 200 or more assets would be supported by the Controller. This means that a user with active collateral and borrow positions on all
200 supported assets could force any calcAccountEquity action to perform some 400 iterations of these loops, each with several expensive external calls.

Examples

By modifying dForce’s unit test suite, we showed that an attacker could force the cost of calcAccountEquity above the block gas limit. This would prevent all of the
following actions, as each relies on calcAccountEquity :

iToken.transfer and iToken.transferFrom

iToken.redeem and iToken.redeemUnderlying

iToken.borrow

iToken.liquidateBorrow and iToken.seize

The following actions would still be possible:

iToken.mint

iToken.repayBorrow and iToken.repayBorrowBehalf

As a result, an attacker may abuse the unbounded looping in calcAccountEquity to prevent the liquidation of underwater positions. We provided dForce with a PoC
here: gist.

https://gist.github.com/wadeAlexC/28719b818514a67bc9a5cd20a3b8e28f

Recommendation

There are many possible ways to address this issue. Some ideas have been outlined below, and it may be that a combination of these ideas is the best approach:

In general, cap the number of markets and borrowed assets a user may have: The primary cause of the DoS is that the number of collateral and borrow positions
held by a user is only restricted by the number of supported assets. The PoC provided above showed that somewhere around 150 collateral positions and 150
borrow positions, the gas costs of calcAccountEquity use most of the gas in a block. Given that gas prices often spike along with turbulent market conditions and
that liquidations are far more likely in turbulent market conditions, a cap on active markets / borrows should be much lower than 150 each so as to keep the cost
of liquidations as low as possible.

dForce should perform their own gas cost estimates to determine a cap, and choose a safe, low value. Estimates should be performed on the high-level
liquidateBorrow method, so as to simulate an actual liquidation event. Additionally, estimates should factor in a changing block gas limit, and the possibility of

opcode gas costs changing in future forks. It may be wise to make this cap con�igurable, so that the limits may be adjusted for future conditions.

4.3 Fix utilization rate computation and respect reserves when lending Medium

Resolution

The dForce team has informed us that the only two interest rate models that are still in use are StablecoinInterestRateModel and StandardInterestRateModel . For these,
recommendation 2 has been addressed in commits 2a0e974 and c11fa9b.

Description

The utilization rate UR of an asset forms the basis for interest calculations and is de�ined as borrows / (borrows + cash - reserves) .

code/contracts/InterestRateModel/InterestRateModel.sol:L72-L88

/**
 * @notice Calculate the utilization rate: `_borrows / (_cash + _borrows - _reserves)`
 * @param _cash Asset balance
 * @param _borrows Asset borrows
 * @param _reserves Asset reserves
 * @return Asset utilization [0, 1e18]
 */
function utilizationRate(
 uint256 _cash,
 uint256 _borrows,
 uint256 _reserves
) internal pure returns (uint256) {
 // Utilization rate is 0 when there are no borrows
 if (_borrows == 0) return 0;

 return _borrows.mul(BASE).div(_cash.add(_borrows).sub(_reserves));
}

The implicit assumption here is that reserves <= cash ; in this case — and if we de�ine UR as 0 for borrows == 0 — we have 0 <= UR <=1 . We can view cash - reserves as
“available cash”. However, the system does not guarantee that reserves never exceeds cash . If reserves > cash (and borrows + cash - reserves > 0), the formula for UR

above gives a utilization rate above 1 . This doesn’t make much sense conceptually and has undesirable technical consequences; an especially severe one is
analyzed in issue 4.4.

Recommendation

If reserves > cash — or, in other words, available cash is negative — this means part of the reserves have been borrowed, which ideally shouldn’t happen in the �irst
place. However, the reserves grow automatically over time, so it might be di�icult to avoid this entirely. We recommend (1) avoiding this situation whenever it is
possible and (2) �ixing the UR computation such that it deals more gracefully with this scenario. More speci�ically:

1. Loan amounts should not be checked to be smaller than or equal to cash but cash - reserves (which might be negative). Note that the current check against
cash happens more or less implicitly because the transfer just fails for insu�icient cash .

2. Make the utilization rate computation return 1 if reserves > cash (unless borrows == 0 , in which case return 0 as is already the case).

Remark

Internally, the utilization rate and other fractional values are scaled by 1e18 . The discussion above has a more conceptual than technical perspective, so we used
unscaled numbers. When making changes to the code, care must be taken to apply the scaling.

4.4 If Base._updateInterest fails, the entire system will halt Medium

Resolution

dForce removed settleInterest from TokenAdmin._setInterestRateModel and MSDS._setInterestRateModel in commit 27f9a28 .

Description

Before executing most methods, the iETH and iToken contracts update interest accumulated on borrows via the method Base._updateInterest . This method uses the
contract’s interest rate model to calculate the borrow interest rate. If the calculated value is above maxBorrowRate (0.001e18), the method will revert:

code/contracts/TokenBase/Base.sol:L92-L107

https://github.com/dforce-network/LendingContracts/commit/2a0e974858e8041f9603d84c2b984b852a3f48f4
https://github.com/dforce-network/LendingContracts/commit/c11fa9b284c4bf61ffbc06c9aa5e3f48e3f93b7f
https://github.com/dforce-network/LendingContracts/commit/27f9a28421bf74b8d187b6c8af75d96894977cfe

function _updateInterest() internal virtual override {
 InterestLocalVars memory _vars;
 _vars.currentCash = _getCurrentCash();
 _vars.totalBorrows = totalBorrows;
 _vars.totalReserves = totalReserves;

 // Gets the current borrow interest rate.
 _vars.borrowRate = interestRateModel.getBorrowRate(
 _vars.currentCash,
 _vars.totalBorrows,
 _vars.totalReserves
);
 require(
 _vars.borrowRate <= maxBorrowRate,
 "_updateInterest: Borrow rate is too high!"
);

If this method reverts, the entire contract may halt and be unrecoverable. The only ways to change the values used to calculate this interest rate lie in methods
that must �irst call Base._updateInterest . In this case, those methods would fail.

One other potential avenue for recovery exists: the Owner role may update the interest rate calculation contract via TokenAdmin._setInterestRateModel :

code/contracts/TokenBase/TokenAdmin.sol:L46-L63

/**
 * @dev Sets a new interest rate model.
 * @param _newInterestRateModel The new interest rate model.
 */
function _setInterestRateModel(
 IInterestRateModelInterface _newInterestRateModel
) external virtual onlyOwner settleInterest {
 // Gets current interest rate model.
 IInterestRateModelInterface _oldInterestRateModel = interestRateModel;

 // Ensures the input address is the interest model contract.
 require(
 _newInterestRateModel.isInterestRateModel(),
 "_setInterestRateModel: This is not the rate model contract!"
);

 // Set to the new interest rate model.
 interestRateModel = _newInterestRateModel;

However, this method also calls Base._updateInterest before completing the upgrade, so it would fail as well.

Examples

We used interest rate parameters taken from dForce’s unit tests to determine whether any of the interest rate models could return a borrow rate that would cause
this failure. The default InterestRateModel is deployed using these values:

baseInterestPerBlock: 0
interestPerBlock: 5.074e10
highInterestPerBlock: 4.756e11
high: 0.75e18

Plugging these values in to their borrow rate calculations, we determined that the utilization rate of the contract would need to be 2103e18 in order to reach the
max borrow rate and trigger a failure. Plugging this in to the formula for utilization rate, we derived the following ratio:

reserves >= (2102/2103)*borrows + cash

With the given interest rate parameters, if token reserves, total borrows, and underlying cash meet the above ratio, the interest rate model would return a borrow
rate above the maximum, leading to the failure conditions described above.

Recommendation

Note that the examples above depend on the speci�ic interest rate parameters con�igured by dForce. In general, with reasonable interest rate parameters and a
reasonable reserve ratio, it seems unlikely that the maximum borrow rate will be reached. Consider implementing the following changes as a precaution:

As utilization rate should be between 0 and 1 (scaled by 1e18), prevent utilization rate calculations from returning anything above 1e18 . See issue 4.3 for a
more thorough discussion of this topic.

Remove the settleInterest modi�ier from TokenAdmin._setInterestRateModel : In a worst case scenario, this will allow the Owner role to update the interest rate model
without triggering the failure in Base._updateInterest .

4.5 RewardDistributor requirement prevents transition of Owner role to smart contract Medium

Resolution

This issue was addressed in commit 4f1e31b by invoking _updateDistributionSpeed directly.

Description

From dForce, we learned that the eventual plan for the system Owner role is to use a smart contract (a multisig or DAO). However, a requirement in
RewardDistributor would prevent the onlyOwner method _setDistributionFactors from working in this case.

_setDistributionFactors calls updateDistributionSpeed , which requires that the caller is an EOA:

code/contracts/RewardDistributor.sol:L179-L189

https://github.com/dforce-network/LendingContracts/commit/4f1e31b3ea47efdfbe5b9603bb49653600a3fe6a

/**
 * @notice Update each iToken's distribution speed according to current global speed
 * @dev Only EOA can call this function
 */
function updateDistributionSpeed() public override {
 require(msg.sender == tx.origin, "only EOA can update speeds");
 require(!paused, "Can not update speeds when paused");

 // Do the actual update
 _updateDistributionSpeed();
}

In the event the Owner role is a smart contract, this statement would necessitate a complicated upgrade to restore full functionality.

Recommendation

Rather than invoking updateDistributionSpeed , have _setDistributionFactors directly call the internal helper _updateDistributionSpeed , which does not require the caller is an
EOA.

4.6 MSDController._withdrawReserves does not update interest before withdrawal Medium

Resolution

This issue was addressed in commit 2b5946e by changing calcEquity to update the interest of each MSDMinter assigned to an MSD asset.

Note that this method iterates over each MSDMinter, which may cause out-of-gas issues if the number of MSDMinters grows. dForce has informed us that the
MSDMinter role will only be held by two contracts per asset (iMSD and MSDS).

Description

MSDController._withdrawReserves allows the Owner to mint the difference between an MSD asset’s accumulated debt and earnings:

code/contracts/msd/MSDController.sol:L182-L195

function _withdrawReserves(address _token, uint256 _amount)
 external
 onlyOwner
 onlyMSD(_token)
{
 (uint256 _equity,) = calcEquity(_token);

 require(_equity >= _amount, "Token do not have enough reserve");

 // Increase the token debt
 msdTokenData[_token].debt = msdTokenData[_token].debt.add(_amount);

 // Directly mint the token to owner
 MSD(_token).mint(owner, _amount);

Debt and earnings are updated each time the asset’s iMSD and MSDS contracts are used for the �irst time in a given block. Because _withdrawReserves does not force
an update to these values, it is possible for the withdrawal amount to be calculated using stale values.

Recommendation

Ensure _withdrawReserves invokes iMSD.updateInterest() and MSDS.updateInterest() .

4.7 permit functions use deployment-time instead of execution-time chain ID Minor

Resolution

This has been addressed in commits a7b8�b0 and d659f2b. The approach taken by the dForce team is to include the chain ID separately in the digest to be
signed and keep the deployment/initialization-time chain ID in the DOMAIN_SEPARATOR . This avoids recomputing the DOMAIN_SEPARATOR in the event of a chain split
and it continues to work on the new chain; the downside is that now there are two chain IDs in the data to be signed — and after a chain split, they are even
different on the new chain — which might be confusing for the signer.

Description

The contracts Base , MSD , and MSDS each have an EIP-2612-style permit function that supports approvals with EIP-712 signatures. We focus this discussion on the
Base contract, but the same applies to MSD and MSDS .

When the contract is initialized, the chain ID is queried (with the CHAINID opcode) and becomes part of the DOMAIN_SEPARATOR — a hash of several values which
(presumably) don’t change over the lifetime of the contract and that can therefore be computed only once, when the contract is deployed.

code/contracts/TokenBase/Base.sol:L23-L56

https://github.com/dforce-network/LendingContracts/commit/2b5946e4aa280240a4fccf76d027b5fe4c83fb0b
https://github.com/dforce-network/LendingContracts/commit/a7b8fb05b62ba3cb01df1fab9b8878c5416d6dee
https://github.com/dforce-network/LendingContracts/commit/d659f2be82a5f54c17e14aa8f34947faf2de273e
https://eips.ethereum.org/EIPS/eip-2612
https://eips.ethereum.org/EIPS/eip-712

function _initialize(
 string memory _name,
 string memory _symbol,
 uint8 _decimals,
 IControllerInterface _controller,
 IInterestRateModelInterface _interestRateModel
) internal virtual {
 controller = _controller;
 interestRateModel = _interestRateModel;
 accrualBlockNumber = block.number;
 borrowIndex = BASE;
 flashloanFeeRatio = 0.0008e18;
 protocolFeeRatio = 0.25e18;
 __Ownable_init();
 __ERC20_init(_name, _symbol, _decimals);
 __ReentrancyGuard_init();

 uint256 chainId;

 assembly {
 chainId := chainid()
 }
 DOMAIN_SEPARATOR = keccak256(
 abi.encode(
 keccak256(
 "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)"
),
 keccak256(bytes(_name)),
 keccak256(bytes("1")),
 chainId,
 address(this)
)
);
}

The DOMAIN_SEPARATOR is supposed to prevent replay attacks by providing context for the signature; it is hashed into the digest to be signed.

code/contracts/TokenBase/Base.sol:L589-L610

bytes32 _digest =
 keccak256(
 abi.encodePacked(
 "\x19\x01",
 DOMAIN_SEPARATOR,
 keccak256(
 abi.encode(
 PERMIT_TYPEHASH,
 _owner,
 _spender,
 _value,
 _currentNonce,
 _deadline
)
)
)
);
address _recoveredAddress = ecrecover(_digest, _v, _r, _s);
require(
 _recoveredAddress != address(0) && _recoveredAddress == _owner,
 "permit: INVALID_SIGNATURE!"
);

The chain ID is not necessarily constant, though. In the event of a chain split, only one of the resulting chains gets to keep the original chain ID and the other will
have to use a new one. With the current pattern, a signature will be valid on both chains; if the DOMAIN_SEPARATOR is recomputed for every veri�ication, a signature
will only be valid on the chain that keeps the original ID — which is probably the intended behavior.

Remark

The reason why the not necessarily constant chain ID is part of the supposedly constant DOMAIN_SEPARATOR is that EIP-712 predates the introduction of the CHAINID

opcode. Originally, it was not possible to query the chain ID via opcode, so it had to be supplied to the constructor of a contract by the deployment script.

Recommendation

An obvious �ix is to compute the DOMAIN_SEPARATOR dynamically in permit . However, since a chain split is a relatively unlikely event, it makes sense to compute the
DOMAIN_SEPARATOR at deployment/initialization time and then check in permit whether the current chain ID equals the one that went into the DOMAIN_SEPARATOR . If that is

true, we proceed as before. If the chain ID has changed, we could (1) just revert, or (2) recompute the DOMAIN_SEPARATOR with the new chain ID. Solution (1) is probably
the easiest and most straightforward to implement, but it should be noted that it makes the permit functionality of this contract completely unusable on the new
chain.

4.8 iETH.receive() does not support contracts executing during their constructor Minor

Description

iETH.receive() requires that the caller is a contract:

code/contracts/iETH.sol:L187-L195

/**
 * @notice receive ETH, used for flashloan repay.
 */
receive() external payable {
 require(
 msg.sender.isContract(),
 "receive: Only can call from a contract!"
);
}

https://eips.ethereum.org/EIPS/eip-712
https://eips.ethereum.org/EIPS/eip-1344

This method uses the extcodesize of an account to check that the account belongs to a contract. However, contracts currently executing their constructor will
have an extcodesize of 0, and will not be able to use this method.

This is unlikely to cause signi�icant issues, but dForce may want to consider supporting this edge case.

Recommendation

Use msg.sender != tx.origin as a more reliable method to detect use by a contract.

Appendix 1 - Files in Scope
This review concerned the following �iles:

File SHA-1 hash

Controller.sol c783e56d9e25ffedccae55ef8204b2645739ad5f

iETH.sol 2c9951228681f4fea21b3b655f21a68ad6325388

InterestRateModel/FixedInterestRateModel.sol f8a269a6a2c8ba7045725589c3155b7c21cbd320

InterestRateModel/InterestRateModel.sol fc26dca35f66adaf5045f0bc88346895cf86619d

InterestRateModel/StablecoinInterestRateModel.sol 3638eb2877938b8110f401d8bdae0ede45316e11

InterestRateModel/StandardInterestRateModel.sol 444104e36cc18075276c07e817caff3e934b51de

interface/IControllerInterface.sol 21bb0c988a�b73cdccc0a2ee50a790c66de0b12a

interface/IFlashloanExecutor.sol 5c746cada49fdd9b083bdef516b69d23d1d44476

interface/IInterestRateModelInterface.sol c04af354e71017ed964866db8a480d15ed1b71a8

interface/IiToken.sol 19907f97bd417036dc7d1125d5948afda8221432

interface/IPriceOracle.sol eb6879315cb735402b95b529161609368ed654c6

interface/IRewardDistributor.sol a9752e52973d3d7158e700886b588ee6229833d6

iToken.sol 4d3ac05d13a75d406b929c97f0c9e249cd840faf

library/ERC20.sol 324800bf529a093aff54b6bbbd921c3df8c50edc

library/Initializable.sol 8f29e0749469160237386e85121fd0306cb83464

library/Ownable.sol 68c38e20cfe7ab0de0a119590f3224e591658224

library/ProxyAdmin.sol 21c6851d1d682425144ddb46be5725aa3b2cde08

library/ReentrancyGuard.sol e70ae�bceeab591323c47e601f6b90958fc55906

library/SafeRatioMath.sol 3c22a2b782b225fa168e0653c50eb660f46f994a

msd/iMSD.sol 669e0edcf804373510c3a88b01a481121864bdd6

msd/MSDController.sol 55b7b51b91a1696533bbea2c59630628c77d486a

msd/MSD.sol dc138f4e86bc21693bdaa8f37464�bf3ee7f36ad

msd/MSDS.sol 304da929d8ddf77429b48031e575838437ff9e18

RewardDistributor.sol 33801ccd521d6386d3cd32485f7f065fa18f5357

TokenBase/Base.sol 52b1e0a5f0379f1acf50ebc8a19a02e4�b0af6bd

TokenBase/TokenAdmin.sol b7dae95a7c244d1b9bc9d2598676eb2d70f65fc7

TokenBase/TokenERC20.sol 4f4cb160efcd7b3cef1452e1b870b57f6a4cb8c4

TokenBase/TokenEvent.sol f8c67f20e43d2f2f4dc0f9e1ea00b4815286ce78

TokenBase/TokenStorage.sol b486e462a9fd93945e73f38226573bbae4238138

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via ConsenSys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the security of any particular project. This
Report does not consider, and should not be interpreted as considering or having any bearing on, the potential economics of a token, token sale or any other
product, service or other asset. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report
provides any warranty or representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or proprietors of
any such business model, and the legal compliance of any such business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Speci�ically, for the avoidance of doubt, this Report does not constitute investment
advice, is not intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security
of the project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our review is
limited to a review of Solidity code and only the Solidity code we note as being within the scope of our review within this report. The Solidity language itself
remains under development and is subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other areas beyond Solidity that
could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes that by making these analyses publicly available,
it can help the blockchain ecosystem develop technical best practices in this rapidly evolving area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites operated by persons other than
ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’ owners. You
agree that ConsenSys and CD are not responsible for the content or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any
other person or entity for the use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports. ConsenSys and CD assumes no responsibility for the use of third party
software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such
software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice. Unless
indicated otherwise, by ConsenSys and CD.

https://consensys.net/

