@Diligence

FUZZING SCRIBBLE ABOUT

Fuji Protocol

1 Executive Summary

2 Scope

2.1 Objectives
3 System Overview

4 Findings

4.1 FlasherFTM - Unsolicited
invocation of the callback
(CREAM auth bypass)

4.2 Lack of reentrancy protection
in token interactions

4.3 Lack of segregation of duties,
excessive owner permissions,
misleading authentication
modifiers

4.4 Unchecked Return Values -
ICErc20 repayBorrow

4.5 Unchecked Return Values -
IComptroller exitMarket ,

enterMarket

4.6 Fliquidator - excess funds of
native tokens are not returned
Medium

4.7 Unsafe arithmetic casts
Medium

4.8 Missing input validation on
flash close fee factors ‘Medium

4.9 Separation of concerns and
consistency in vaults 'Medium

410 Aave/Geist Interface
declaration mismatch and
unchecked return values 'Medium

411 Missing slippage protection
for rewards swap ‘Medium

412 Unpredictable behavior due
to admin front running or general
bad timing 'Medium

413 FujiOracle - _getUSDPrice

does not detect stale oracle
prices; General Oracle Risks
Medium

414 Unclaimed or front-runnable
proxy implementations Medium

4.15 Unused Import (I3

416 WFTM - Use of incorrect
interface declarations [[[i{t)3

417 Inconsistent isFTM , isETH

checks (Y3

418 FujiOracle - setPriceFeed
should check asset and priceFeed

decimals (JE3

419 Unchecked function return
values for low-level calls

4.20 Use the compiler to resolve
function selectors for interfaces

4.21 Reduce code complexity

4.22 Unusable state variable in
dYdX provider

4.23 Use enums instead of
hardcoded integer literals

4.24 Redundant harvest check in
vault

4.25 Redundant use of
immutable for constants

4.26 Redeclaration of constant
values in multiple contracts

4.27 Always use the best available
type

Appendix 1 - Files in Scope

Date March 2022

Dominik Muhs, Martin
Ortner

Auditors

1 Executive Summary

This report presents the results of our engagement with FujiDAO to review the Fuji Protocol, a borrowing aggregator protocol.
The review was conducted over two weeks, from February 21, 2022 to March 04, 2022, and 2x2 person weeks were spent.

Starting with an investigation into the overall architecture of the system, the assessment team dissected the system into its main
components. In a kick-off call on Tuesday, February 22, 2022, it was mutually agreed that the fantom contracts are the main
priority. However, anything found with the mainnet (Ethereum) contracts will also be reported as we come by findings.

The team continued reviewing the contracts individually based on the components’ perceived risk profile, followed by reviewing
the entire system that started in the second week. The client provided a Whitepaper and a high-level user-facing documentation.

Closing the first week of the review, we reached out to the client with a request to help assess the severity of a potential security
issue with the flash loan contract. Following this, the client chose to upgrade one of their contracts implementing a hotfix to
mitigate the potential of unsolicited flash loans executing privileged functionality in the system.

It should be noted that the fantom and mainnet/Ethereum contracts are very similar. The findings listed in this report may affect both
code-bases.

Due to the amount and classes of findings reported, we highly recommend addressing the results reported followed by a
thorough review of the next iteration before going live.

2 Scope

Our review focused on the commit hash #f8436a81437914d43297761b4011d60b21f17216. The list of files in scope can be found in
the Appendix.

Initially, all contracts in ./contracts were in scope. However, due to the time-boxed nature of this review, it was agreed that the
main priority should be the contracts in the ./contracts/fantom folder while still reporting issues with mainnet contracts as we
come across them.

2.1 Objectives
Together with the FujiDAO team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended functionality and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 System Overview

This section describes the top-level/deployable contracts, their inheritance structure and interfaces, actors, permissions, and
essential contract interactions of the system under review.

Contracts are depicted as boxes. Publicly reachable interface methods are outlined as rows in each box. The ‘- icon indicates
that a method is declared non-state-changing (view/pure), while other methods may change state. A yellow dashed row at the
top of the contract shows inherited contracts. A green dashed row at the top of the contract indicates referenced libraries.
Access control modifiers are connected as yellow “gatekeeper”-bubbles in front of methods. The owner of various components is
depicted as an actor symbol.


https://github.com/Fujicracy/fuji-protocol/blob/main/Fuji-protocol-v1-whitepaper.pdf
https://docs.fujidao.org/getting-started/dashboard/deposit
https://github.com/Fujicracy/fuji-protocol/commit/f8436a81437914d43297761b4011d60b21f17216
https://github.com/Fujicracy/fuji-protocol/tree/f8436a81437914d43297761b4011d60b21f17216/contracts/
https://github.com/Fujicracy/fuji-protocol/tree/f8436a81437914d43297761b4011d60b21f17216/contracts/fantom
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

Appendix 2 - Disclosure

,,,,,,,,,,,,,,,,,

nnnnnn

,,,,,,,

mmmmmm

wwwwww

4 Findings

Each issue has an assigned severity:

) issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [BM) issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

issues are directly exploitable security vulnerabilities that need to be fixed.

41 FlasherFTM - Unsolicited invocation of the callback (CREAM auth bypass)

Description

TL;DR: AI’]YOI"IG can call ICTokenFlashloan(crToken).flashLoan(address(FlasherFTM), address(FlasherFTM), info.amount, params) direCtIy and ppass
validation checks in onrFiashLoan() . This call forces it to accept unsolicited flash loans and execute the actions provided under the
attacker’s FlashLoan.Info .

receiver.onFlashLoan(initiator, token, amount, ...) is called when receiving a flash loan. According to E|P-3156, the initiator iS
msg.sender SO that one can use it to check if the call to receiver.onFlashLoan() was unsolicited or not.

Third-party Flash Loan provider contracts are often upgradeable.

For example, the Geist lending contract configured with this system is upgradeable. Upgradeable contracts bear the risk that one
cannot assume that the contract is always running the same code. In the worst case, for example, a malicious proxy admin
(leaked keys, insider, ...) could upgrade the contract and perform unsolicited calls with arbitrary data to Flash Loan consumers in
an attempt to exploit them. It, therefore, is highly recommended to verify that flash loan callbacks in the system can only be
called if the contract was calling out to the provider to provide a Flash Loan and that the conditions of the flash loan (returned
data, amount) are correct.

Not all Flash Loan providers implement EIP-3156 correctly.

Cream Finance, for example, allows users to set an arbitrary initiator when requesting a flash loan. This deviates from EIP-3156
and was reported to the Cream development team as a security issue. Hence, anyone can spoof that initiator and potentially
bypass authentication checks in the consumers’ receiver.onfFlashLoan() . Depending on the third-party application consuming the
flash loan is doing with the funds, the impact might range from medium to critical with funds at risk. For example, projects might
assume that the flash loan always originates from their trusted components, e.g., because they use them to refinance switching
funds between pools or protocols.

Examples

e The FriasherFtM contract assumes that flash loans for the Flasher can only be initiated by authorized callers ( isAuthorized ) - for a
reason - because it is vital that the FiashLoan.Info calldata info pParameter only contains trusted data:

code/contracts/fantom/flashloans/FlasherFTM.sol:L66-L79


https://consensys.net/diligence/audits/2022/03/fuji-protocol/img/tm_fuji.svg
https://ftmscan.com/address/0x9FAD24f572045c7869117160A571B2e50b10d068#code

[ **
* @dev Routing Function for Flashloan Provider
* @param info: struct information for flashLoan
* @param _flashnum: integer identifier of flashloan provider
*/
function initiateFlashloan(FlashLoan.Info calldata info, uint8 _flashnum) external isAuthorized override {
if (_flashnum == @) {
_initiateGeistFlashLoan(info);
} else if (_flashnum == 2) {
_initiateCreamFlashLoan(info);
} else {
revert(Errors.VL_INVALID_FLASH_NUMBER) ;

code/contracts/fantom/flashloans/FlasherFTM.sol:L46-L55

modifier isAuthorized() {

require(
msg.sender == _fujiAdmin.getController() ||
msg.sender == _fujiAdmin.getFliquidator() ||
msg.sender == owner(),

Errors.VL_NOT_AUTHORIZED
);

-

e The Cream Flash Loan initiation code requests the flash loan via

ICTokenFlashloan(crToken).flashLoan(receiver=address(this), initiator=address(this), ...) :

code/contracts/fantom/flashloans/FlasherFTM.sol:L144-L158

/**
* @dev Initiates an CreamFinance flashloan.
* @param info: data to be passed between functions executing flashloan logic
*/
function _initiateCreamFlashLoan(FlashLoan.Info calldata info) internal {
address crToken = info.asset == _FTM
? 0xd528697008aC67A21818751A5e3c58C8daE54696
: _crMappings.addressMapping(info.asset);

// Prepara data for flashloan execution
bytes memory params = abi.encode(info);

// Initialize Instance of Cream crlLendingContract
ICTokenFlashloan(crToken).flashLoan(address(this), address(this), info.amount, params);

Note: The Cream implementation does not send sender=msg.sender tO the onFlashLoan() callback - like any other flash loan provider
does and EIP-3156 suggests - but uses the value that was passed in as initiator When requesting the callback. This detail
completely undermines the authentication checks implemented in onFlashLoan as the sender value cannot be trusted.

contracts/CCollateralCapErc20.sol:L187

address initiator,

code/contracts/fantom/flashloans/FlasherFTM.sol:L162-L175

x/
function onFlashLoan(
address sender,
address underlying,
uint256 amount,
uint256 fee,
bytes calldata params
) external override returns (bytes32) {
// Check Msg. Sender is crToken Lending Contract
// from IronBank because ETH on Cream cannot perform a flashloan
address crToken = underlying == _WFTM
? 0xd528697008aC67A21818751A5e3c58C8daE54696
: _crMappings.addressMapping(underlying);
require(msg.sender == crToken && address(this) == sender, Errors.VL_NOT_AUTHORIZED);

Recommendation
Cream Finance

We've reached out to the Cream developer team, who have confirmed the issue. They are planning to implement
countermeasures. Our recommendation can be summarized as follows:

Implement the EIP-3156 compliant version of flashLoan() with initiator hardcoded to msg.sender .
FujiDAO (and other flash loan consumers)

We recommend not assuming that FriashLoan.Info contains trusted or even validated data when a third-party flash loan provider
provides it! Developers should ensure that the data received was provided when the flash loan was requested.

The contract should reject unsolicited flash loans. In the scenario where a flash loan provider is exploited, the risk of an exploited
trust relationship is less likely to spread to the rest of the system.



The Cream initiator provided to the onFlashLoan() callback cannot be trusted until the Cream developers fix this issue. The
initiator can easily be spoofed to perform unsolicited flash loans. We, therefore, suggest:

1. Validate that the initiator value is the fiashLoan() caller. This conforms to the standard and is hopefully how the Cream team
is fixing this, and

2. Ensure the implementation tracks its own calls to filashLoan() in a state-variable semaphore, i.e. store the flash loan data/hash
in a temporary state-variable that is only set just before calling fiashLoan() until being called back in onFlashioan() . The
received data can then be verified against the stored artifact. This is a safe way of authenticating and verifying callbacks.

Values received from untrusted third parties should always be validated with the utmost scrutiny.
Smart contract upgrades are risky, so we recommend implementing the means to pause certain flash loan providers.

Ensure that flash loan handler functions should never re-enter the system. This provides additional security guarantees in case a
flash loan provider gets breached.

Note: The Fuji development team implemented a hotfix to prevent unsolicited calls from Cream by storing the hash(FlashLoan.info)
in a state variable just before requesting the flash loan. Inside the onFiashioan callback, this state is validated and cleared
accordingly.

An improvement to this hotfix would be, to check _paramstash before any external calls are made and clear it right after validation
at the beginning of the function. Additionally, nhash==exe should be explicitly disallowed. By doing so, the check also serves as a
reentrancy guard and helps further reduce the risk of a potentially malicious flash loan re-entering the function.

4.2 Lack of reentrancy protection in token interactions =m
Description

Token operations may potentially re-enter the system. For example, univtransfer may perform a low-level to.call{value}() and,
depending on the token’s specification (e.g. erc-2e extension or erc-26 compliant Erc-777 ), token may implement callbacks when
being called as token.safeTransfer(to, amount) (OI’ token.transferx*() )

Therefore, it is crucial to strictly adhere to the checks-effects pattern and safeguard affected methods using a mutex.
Examples

code/contracts/fantom/libraries/LibUniversalERC20FTM.sol:L26-L40

function univTransfer(
IERC20 token,
address payable to,
uint256 amount
) internal {
if (amount > @) {
if (isFTM(token)) {
(bool sent, ) = to.call{ value: amount }("");
require(sent, "Failed to send Ether");
} else {
token.safeTransfer(to, amount);

}

® withdraw iS nonReentrant While paybackandwithdraw iS not, which appears to be inconsistent

code/contracts/fantom/FujiVaultFTM.sol:L172-L182

VEX
* @dev Paybacks the underlying asset and withdraws collateral in a single function call from activeProvider
* @param _paybackAmount: amount of underlying asset to be payback, pass -1 to pay full amount
* @param _collateralAmount: amount of collateral to be withdrawn, pass -1 to withdraw maximum amount
*/
function paybackAndWithdraw(int256 _paybackAmount, int256 _collateralAmount) external payable {
updateF1155Balances() ;
_internalPayback(_paybackAmount);
_internalWithdraw(_collateralAmount);

}

code/contracts/fantom/FujiVaultFTM.sol:L232-L241

/**

*

@dev Paybacks Vault's type underlying to activeProvider - called by users
@param _repayAmount: token amount of underlying to repay, or

pass any 'negative number' to repay full ammount

Emits a {Repay} event.

*

*

*

*/

function payback(int256 _repayAmount) public payable override ({
updateF1155Balances() ;
_internalPayback(_repayAmount) ;

}

® depositAndBorrow iS NOt nonreentrant While borrow() is which appears to be inconsistent

code/contracts/fantom/FujiVaultFTM.sol:L161-L171


https://ftmscan.com/address/0x0EFc598FFA88fa416dE729A78EB357B0dc45Dbc0#code

[ **
* @dev Deposits collateral and borrows underlying in a single function call from activeProvider
* @param _collateralAmount: amount to be deposited
* @param _borrowAmount: amount to be borrowed
*/
function depositAndBorrow(uint256 _collateralAmount, uint256 _borrowAmount) external payable {
updateF1155Balances() ;
_internalDeposit(_collateralAmount);
_internalBorrow(_borrowAmount) ;

}

code/contracts/fantom/FujiVaultFTM.sol:L222-L230

[ **
* @dev Borrows Vault's type underlying amount from activeProvider
* @param _borrowAmount: token amount of underlying to borrow
# Emits a {Borrow} event.
*/
function borrow(uint256 _borrowAmount) public override nonReentrant {
updateF1155Balances() ;
_internalBorrow(_borrowAmount) ;

}

Here's an example call stack for depositandBorrow that outlines how a reentrant erc2e token (e.g. Eerc777 ) may call back into
depositAndBorrow again, updateBalances twice in the beginning before tokens are even transferred and then continues to call
internalDeposit , internalBorrow , internalBorrow Without an update before the 2nd borrow. Note that both internalpeposit and
internalBorrow read indexes that may now be outdated.

depositAndBorrow
updateBalances
internalDeposit ->
ERC777(collateralAsset).safeTransferFrom() ---> calls back!
---callback:beforeTokenTransfer---->
I'l depositAndBorrow
updateBalances
internalDeposit

--> ERC777.safeTransferFrom()
<--
_deposit
mint
internalBorrow
mint
_borrow
ERC777(borrowAsset) .univTransfer(msg.sender) --> might call back

_deposit
mint
internalBorrow
mint
_borrow

--> ERC777(borrowAsset) .univTransfer(msg.sender) --> might call back

< ——

Recommendation

Consider decorating methods that may call back to untrusted sources (i.e., native token transfers, callback token operations) as
nonreentrant and strictly follow the checks-effects pattern for all contracts in the code-base.

4.3 Lack of segregation of duties, excessive owner permissions, misleading authentication
modifiers ;zm

Descriptio
In the Fujierc1155 contract, the onlypermit modifier should not include owner .

The FujiErc1155 iS claimable ( ownable ) Via F1155Manager . The onlypermit modifier includes contracts explicitly permitted to perform
actions, and the owner , in a lot of cases, has separate duties. Note that the owner can add new contracts to the onlypermit
whitelist.

code/contracts/abstracts/fujiERC1155/F1155Manager.sol:L34-L37

modifier onlyPermit() {
require(addrPermit[_msgSender()] || msg.sender == owner(), Errors.VL_NOT_AUTHORIZED);

-

However, the owner can also wholly mess up accounting as they are permitted to call updatestate() , which should only be callable
by vaults:

code/contracts/FujiERC1155.s0l:L53-L59

function updateState(uint256 _assetID, uint256 newBalance) external override onlyPermit {
uint256 total = totalSupply(_assetID);
if (newBalance > @ && total > @ && newBalance > total) {
uint256 newIndex = (indexes[_assetID] * newBalance) / total;
indexes[_assetID] = uint128(newIndex);



The same is true for FujiERC1155.{mint|mintBatch|burn|burnBatch|addInitializeAsset} Unless there is a reason to allow owner to freely
burn/mint/initialize tokens and updateState for borrowed assets to arbitrary values.

® Fujivault - owner iS part of isauthorized and can change the system out-of-band. controller does not implement means to call
functions it has permissions to.

Multiple methods in FujiVault are decorated with the access control isauthorized that grants the owner and the currently
configured controller access. The controller , however, does not implement any means to call some of the methods on the Vault.

Furthermore, the owner is part of isauthorized , t0O, and can switch out the debt-management token while one is already
configured without any migration. This is likely to create an inconsistent state with the Vault, and no one will be able to withdraw
their now non-existent token.

code/contracts/fantom/FujiVaultFTM.sol:L65-L74

VEZ

* @dev Throws if caller is not the 'owner' or the '_controller' address stored in {FujiAdmin}

*/
modifier isAuthorized() {
require(
msg.sender == owner() || msg.sender == _fujiAdmin.getController(),

Errors.VL_NOT_AUTHORIZED
)

-

The owner can call methods “out of band,” bypassing steps the contract system would enforce otherwise, e.g. controller calling

setActiveProvider .
It is assumed that setoracle , setFactor Should probably be onilyowner instead.

code/contracts/fantom/FujiVaultFTM.sol:L354-L367

function setFujiERC1155(address _fujiERC1155) external isAuthorized {
require(_fujiERC1155 != address(@), Errors.VL_ZERO_ADDR);
fujiERC1155 = _fujiERC1155;

vAssets.collateralID = IFujiERC1155(_fujiERC1155) .addInitializeAsset(
IFujiERC1155.AssetType.collateralToken,
address(this)

);

vAssets.borrowID = IFujiERC1155(_fujiERC1155).addInitializeAsset(
IFujiERC1155.AssetType.debtToken,
address(this)

)5
emit F1155Changed(_fujiERC1155);

Note ensure that setproviders can only ever be set by a trusted entity or multi-sig as the vault delegatecalls the provider logic (via
vaultControlUpgradeable ) and, hence, the provider has total control over the vault storage!

® FliquidatorFTM - Unnecessary and confusing modifier FliquidatorFTM.isAuthorized
The contract is already ciaimable ; therefore, use the already existing modifier claimable.onlyowner instead.

code/contracts/fantom/FliquidatorFTM.sol:L86-L91

*/
modifier isAuthorized() {
require(msg.sender == owner(), Errors.VL_NOT_AUTHORIZED);

-

code/contracts/abstracts/claimable/Claimable.sol:L48-L51

modifier onlyOwner() {
require(_msgSender() == owner(), "Ownable: caller is not the owner");

-

Use claimable.onlyowner instead.
* FlasherFTM - owner Should not be able to call initiateFlashloan directly; misleading comment.

code/contracts/fantom/flashloans/FlasherFTM.sol:L42-L54

/**

* @dev Throws if caller is not 'owner'.

*/
modifier isAuthorized() {
require(
msg.sender == _fujiAdmin.getController() ||
msg.sender == _fujiAdmin.getFliquidator() ||
msg.sender == owner(),

Errors.VL_NOT_AUTHORIZED
)

-



e rujierc1155 - All vaults have equal permission to mint/burn/initializeAssets for every vault

All vaults need to be in the oniyrermit ACL whitelist. No additional checks enforce that the calling vault can only modify its token
balances. Furthermore, rujivaultFtm is upgradeable; thus, the contract logic may be altered to allow the vault to modify any other
token id’s balance. To reduce this risk and the potential of an exploited contract affecting other token balances in the system, it is
suggested to change the coarse oniyrermit ACL to one that checks that the calling vault can only manage their token IDs.

Recommendation

Reconsider the authentication concept and make it more transparent. Segregate duties and clearly define roles and capabilities.
Avoid having overly powerful actors and reduce their capabilities to the bare minimum needed to segregate risk. If an actor is
part of an ACL in a third-party contract, they also should have the means to call that method in a controlled way or else remove
them from the ACL. To avoid conveying a false sense of trust towards certain actors within the smart contract system, it is
suggested to use the centralized oniyowner decorator for methods only the owner can call. This more accurately depicts “who can
do what” in the system and makes it easier to trust the project team managing it.

Avoid excessively powerful owners that can change/mint/burn anything in the system as this is a risk for the general consistency.
Remove owner from methods/modifiers they don’t need to be part of/have access to.

Ensure owner is atime-locked multi-sig or governance contract. Rename authentication modifiers to describe better what callers
they allow.

4.4 Unchecked Return Values - ICErc20 repayBorrow mm

Description

ICErc20.repayBorrow returns a non-zero uint on error. Multiple providers do not check for this error condition and might return
success even though repaysorrow failed, returning an error code.

This can potentially allow a malicious user to call paybackandwithdraw() While not repaying by causing an error in the sub-call to
compound. repayBorrow() , Which ends up being silently ignored. Due to the missing success condition check, execution continues
normally with _internalwithdraw() .

Also, see issue 4.5.

code/contracts/interfaces/compound/ICErc20.sol:L11-L12

function repayBorrow(uint256 repayAmount) external returns (uint256);

The method may return an error due to multiple reasons:

contracts/CToken.sol:L808-L816

function repayBorrowInternal(uint repayAmount) internal nonReentrant returns (uint, uint) {

uint error = accruelnterest();

if (error != uint(Error.NO_ERROR)) {
// accruelInterest emits logs on errors, but we still want to log the fact that an attempted borrow failed
return (fail(Error(error), FailureInfo.REPAY_BORROW_ACCRUE_INTEREST_FAILED), 0);

}

// repayBorrowFresh emits repay-borrow-specific logs on errors, so we don't need to

return repayBorrowFresh(msg.sender, msg.sender, repayAmount);

contracts/CToken.sol:L855-L873

if (allowed != @) {
return (failOpaque(Error.COMPTROLLER_REJECTION, FailureInfo.REPAY_BORROW_COMPTROLLER_REJECTION, allowed), 0);

/* Verify market's block number equals current block number */
if (accrualBlockNumber != getBlockNumber()) {
return (fail(Error .MARKET_NOT_FRESH, FailureInfo.REPAY_BORROW_FRESHNESS_CHECK), @);

RepayBorrowlLocalVars memory vars;

/* We remember the original borrowerIndex for verification purposes */
vars.borrowerIndex = accountBorrows[borrower].interestIndex;

/* We fetch the amount the borrower owes, with accumulated interest */
(vars.mathErr, vars.accountBorrows) = borrowBalanceStoredInternal(borrower);
if (vars.mathErr !'= MathError.NO_ERROR) {
return (failOpaque(Error.MATH_ERROR, FailureInfo.REPAY_BORROW_ACCUMULATED_BALANCE_CALCULATION_FAILED, uint(vars.mathErr)), @

Examples
Multiple providers, here are some examples:

code/contracts/fantom/providers/ProviderCream.sol:L168-L173

// Check there is enough balance to pay

require(erc20token.balanceOf (address(this)) >= _amount, "Not-enough-token");
erc20token.univApprove(address(cyTokenAddr), _amount);
cyToken.repayBorrow(_amount) ;



code/contracts/fantom/providers/ProviderScream.sol:L170-L172

require(erc20token.balanceOf (address(this)) >= _amount, "Not-enough-token");
erc20token.univApprove(address(cyTokenAddr), _amount);
cyToken.repayBorrow(_amount) ;

code/contracts/mainnet/providers/ProviderCompound.sol:L139-L155

if (_isETH(_asset)) {
// Create a reference to the corresponding cToken contract
ICEth cToken = ICEth(cTokenAddr);

cToken.repayBorrow{ value: msg.value }();
} else {

// Create reference to the ERC20 contract

IERC20 erc2@0token = IERC20(_asset);

// Create a reference to the corresponding cToken contract
ICErc20 cToken = ICErc20(cTokenAddr);

// Check there is enough balance to pay
require(erc20token.balanceOf(address(this)) >= _amount, "Not-enough-token");
erc20token.univApprove(address(cTokenAddr), _amount);
cToken.repayBorrow(_amount) ;

Recommendation

Check for cyToken.repayBorrow(_amount) !'= @ Ol Error.NO_ERROR .

4.5 Unchecked Return Values - IComptroller exitMarket, enterMarket o

Description

IComptroller.exitMarket() , IComptroller.enterMarkets() May return a non-zero uint on error but none of the Providers check for this error
condition. Together with issue 4.10, this might suggest that unchecked return values may be a systemic problem.

Here's the upstream implementation:

contracts/Comptroller.sol:L179-L187

if (amountOwed '= @) {
return fail(Error .NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED);

/* Fail if the sender is not permitted to redeem all of their tokens #*/
uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
if (allowed != @) {
return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);

/[ **

@notice Removes asset from sender's account liquidity calculation

@dev Sender must not have an outstanding borrow balance in the asset,
or be providing necessary collateral for an outstanding borrow.

@param cTokenAddress The address of the asset to be removed

@return Whether or not the account successfully exited the market

* % % % %

*/
function exitMarket(address cTokenAddress) external returns (uint) {
CToken cToken = CToken(cTokenAddress);
/* Get sender tokensHeld and amountOwed underlying from the cToken */
(uint oErr, uint tokensHeld, uint amountOwed, ) = cToken.getAccountSnapshot(msg.sender);
require(oErr == 0, "exitMarket: getAccountSnapshot failed"); // semi-opaque error code

/* Fail if the sender has a borrow balance */
if (amountOwed !'= @) {
return fail(Error .NONZERO_BORROW_BALANCE, FailureInfo.EXIT_MARKET_BALANCE_OWED) ;

/* Fail if the sender is not permitted to redeem all of their tokens */
uint allowed = redeemAllowedInternal(cTokenAddress, msg.sender, tokensHeld);
if (allowed != @) {
return failOpaque(Error.REJECTION, FailureInfo.EXIT_MARKET_REJECTION, allowed);

Examples

e Unchecked return value exitmarket

All Providers exhibit the same issue, probably due to code reuse. (also see https://github.com/ConsenSysDiligence/fuji-protocol-
audit-2022-02/issues/19). Some examples:

code/contracts/fantom/providers/ProviderCream.sol:L52-L57

function _exitCollatMarket(address _cyTokenAddress) internal {
// Create a reference to the corresponding network Comptroller
IComptroller comptroller = IComptroller(_getComptrollerAddress());

comptroller.exitMarket(_cyTokenAddress);

}


https://github.com/ConsenSysDiligence/fuji-protocol-audit-2022-02/issues/19)

code/contracts/fantom/providers/ProviderScream.sol:L52-L57

function _exitCollatMarket(address _cyTokenAddress) internal ({
// Create a reference to the corresponding network Comptroller
IComptroller comptroller = IComptroller(_getComptrollerAddress());
comptroller.exitMarket(_cyTokenAddress);

}

code/contracts/mainnet/providers/ProviderCompound.sol:L46-L51

function _exitCollatMarket(address _cTokenAddress) internal ({
// Create a reference to the corresponding network Comptroller
IComptroller comptroller = IComptroller(_getComptrollerAddress());
comptroller.exitMarket(_cTokenAddress);

}

code/contracts/mainnet/providers/ProviderironBank.sol:L52-L57

function _exitCollatMarket(address _cyTokenAddress) internal {
// Create a reference to the corresponding network Comptroller
IComptroller comptroller = IComptroller(_getComptrollerAddress());

comptroller.exitMarket(_cyTokenAddress);
}

e Unchecked return value entermarkets (Note that 1comptroller returns no_erroR When already joined to enterMarkets .

All Providers exhibit the same issue, probably due to code reuse. (also see https://github.com/ConsenSysDiligence/fuji-protocol-
audit-2022-02/issues/19). For example:

code/contracts/fantom/providers/ProviderCream.sol:L39-L46

function _enterCollatMarket(address _cyTokenAddress) internal {
// Create a reference to the corresponding network Comptroller
IComptroller comptroller = IComptroller(_getComptrollerAddress());

address|[] memory cyTokenMarkets = new address[](1);

cyTokenMarkets[@] = _cyTokenAddress;
comptroller.enterMarkets(cyTokenMarkets);
}
Recommendation

Require that return value is ERROR.NO_ERROR OF @ .

4.6 Fliquidator - excess funds of native tokens are not returned wedgium

Description

FliquidatorFTM.batchLiquidate accepts the rtm native token and checks if at least an amount of debtTotal was provided with the call.
The function continues using the debttotal value. If a caller provides msg.value > debtTotal , excess funds are not returned and
remain in the contract. rliquidatorFTM iS Not upgradeable, and there is no way to recover the surplus funds.

Examples

code/contracts/fantom/FliquidatorFTM.sol:L148-L150

if (vAssets.borrowAsset == FTM) {
require(msg.value >= debtTotal, Errors.VL_AMOUNT_ERROR) ;
} else {

Recommendation

Consider returning excess funds. Consider making _constructrarams public to allow the caller to pre-calculate the debttotal that
needs to be provided with the call.

Consider removing support for native token rtm entirely to reduce the overall code complexity. The wrapped equivalent can be
used instead.

4.7 Unsafe arithmetic casts widiun

Description

The reason for using signed integers in some situations appears to be to use negative values as an indicator to withdraw
everything. Using a whole bit of uint256 for this is quite a lot when using type(uint256).max would equal or better serve as a flag to
withdraw everything.

Furthermore, even though the code uses solidity 8.8.x , which safeguards arithmetic operations against under/overflows,
arithmetic typecast is not protected.

Also, see issue 4.9 for a related issue.


https://github.com/ConsenSysDiligence/fuji-protocol-audit-2022-02/issues/19)

= solidity-shell

*ﬁ?Ehtering interactive Solidity %0.8.11 shell. '.help' and '.exit' are your friends.
» ii ganache-mgr: starting temp. ganache instance ...
» uint(int(—10@))
115792089237316195423570985008687907853269984665640564039457584007913129639836
» 1nt256(uint(2**256-100))
-100

Examples

code/contracts/fantom/FliquidatorFTM.sol:L167-L178

// Compute how much collateral needs to be swapt
uint256 collateralInPlay = _getCollateralInPlay(
vAssets.collateralAsset,
vAssets.borrowAsset,
debtTotal + bonus

)

// Burn f1155
_burnMulti(addrs, borrowBals, vAssets, _vault, f1155);

// Withdraw collateral
IVault(_vault).withdrawLiq(int256(collateralInPlay));

code/contracts/fantom/FliquidatorFTM.sol:L264-L276

// Compute how much collateral needs to be swapt for all liquidated users
uint256 collateralInPlay = _getCollateralInPlay(
vAssets.collateralAsset,
vAssets.borrowAsset,
_amount + _flashloanFee + bonus

)

// Burn f1155
_burnMulti(_addrs, _borrowBals, vAssets, _vault, f1155);

// Withdraw collateral
IVault(_vault).withdrawLiq(int256(collateralInPlay));

code/contracts/fantom/FliquidatorFTM.sol:L334-L334

uint256 amount = _amount < @ ? debtTotal : uint256(_amount);

code/contracts/fantom/FujiVaultFTM.sol:L213-L220

function withdrawlLiq(int256 _withdrawAmount) external override nonReentrant onlyFliquidator {
// Logic used when called by Fliquidator
_withdraw(uint256(_withdrawAmount), address(activeProvider));
IERC20Upgradeable(vAssets.collateralAsset).univTransfer(
payable(msg.sender),
uint256 (_withdrawAmount)

)
}

e pot. unsafe truncation (unlikely)

code/contracts/FujiERC1155.s0l:L53-L59

function updateState(uint256 _assetID, uint256 newBalance) external override onlyPermit {
uint256 total = totalSupply(_assetID);
if (newBalance > @ && total > @ && newBalance > total) {
uint256 newIndex = (indexes[_assetID] * newBalance) / total;
indexes[_assetID] = uint128(newIndex);

Recommendation

If negative values are only used as a flag to indicate that all funds should be used for an operation, use type(uint256).max instead. It
is wasting less value-space for a simple flag than using the uint256 high-bit range. Avoid typecast where possible. Use safecast
instead or verify that the casts are safe because the values they operate on cannot under- or overflow. Add inline code comments
if that’s the case.

4.8 Missing input validation on flash close fee factors widium

Description

The FriiquidatorFTM contract allows authorized parties to set the flash close fee factor. The factor is provided as two integers
denoting numerator and denominator. Due to a lack of boundary checks, it is possible to set unrealistically high factors, which go
well above 1. This can have unexpected effects on internal accounting and the impact of flashloan balances.

Examples

code/contracts/fantom/FliquidatorFTM.sol:L657-L659



function setFlashCloseFee(uint64 _newFactorA, uint64 _newFactorB) external isAuthorized {
flashCloseF.a = _newFactorA;
flashCloseF.b = _newFactorB;

Recommendation

Add a requirement making sure that flashcloseF.a <= flashCloseF.b .

4.9 Separation of concerns and consistency in vaults wedium

Description

The rujivaultFTM contract contains multiple balance-changing functions. Most notably, withdraw is passed an int256 denoted
amount parameter. Negative values of this parameter are given to the _internalwithdraw function, where they trigger the
withdrawal of all collateral. This approach can result in accounting mistakes in the future as beyond a certain point in the vault’s
accounting; amounts are expected to be only positive. Furthermore, the concerns of withdrawing and entirely withdrawing are
not separated.

The above issue applies analogously to the payback function and its dependency on _internalPayback .

For consistency, withdrawLiq also takes an int256 amount parameter. This function is only accessible to the Fiiquidator contract
and withdraws collateral from the active provider. However, all occurrences of the _withdrawamount parameter are cast to uint256 .

Examples
The withdraw entry point:

code/contracts/fantom/FujiVaultFTM.sol:L201-L204

function withdraw(int256 _withdrawAmount) public override nonReentrant {
updateF1155Balances() ;
_internalWithdraw(_withdrawAmount) ;

}

_internalWithdraw 'S negative amount check:

code/contracts/fantom/FujiVaultFTM.sol:L654-L657

uint256 amountToWithdraw = _withdrawAmount < 0
? providedCollateral - neededCollateral
: uint256(_withdrawAmount) ;

The withdrawLiq entry point for the Fliquidator :

code/contracts/fantom/FujiVaultFTM.sol:L213-L220

function withdrawlLiq(int256 _withdrawAmount) external override nonReentrant onlyFliquidator {
_withdraw(uint256(_withdrawAmount), address(activeProvider));
IERC20Upgradeable(vAssets.collateralAsset).univTransfer(

payable(msg.sender),
uint256 (_withdrawAmount)

);

Recommendation

We recommend splitting the withdraw(int256) function into two: withdraw(uint256) and withdrawall() . These will provide the same
functionality while rendering the updated code of _internalwithdraw easier to read, maintain, and harder to manipulate. The
recommendation applies to payback and _internalPayback .

Similarly, withdrawLiq ‘s parameter should be a uint256 to prevent unnecessary casts.

410 Aave/Geist Interface declaration mismatch and unchecked return values wediim

Description

The two lending providers, Geist & Aave, do not seem to be directly affiliated even though one is a fork of the other. However, the
interfaces may likely diverge in the future. Using the same interface declaration for both protocols might become problematic
with future upgrades to either protocol. The interface declaration does not seem to come from the original upstream project. The
interface 1aavelLendingPool does not declare any return values while some of the functions called in Geist or Aave return them.

Note: that we have not verified all interfaces for correctness. However, we urge the client to only use official interface
declarations from the upstream projects and verify that all other interfaces match.

Examples

The 1LendingPool configured in providerAave ( 0xB53C1a33016B2DC2fF3653530bfF1848a515c8¢5 -> implementation:

0xc6845a5c768bf8d768124918927877efdad25baf )

code/contracts/mainnet/providers/ProviderAave.sol:L19-L21

function _getAaveProvider() internal pure returns (IAavelLendingPoolProvider) {
return IAavelLendingPoolProvider(8xB53C1a33016B2DC2fF3653530bfF1848a515¢c8c5) ;

}

The 1aaveLendingPool does not declare return values for any function, while upstream does.



code/contracts/interfaces/aave/lAaveLendingPool.sol:L1-L46

// SPDX-License-Identifier: MIT
pragma solidity %0.8.0;

interface IAavelLendingPool {

function flashlLoan(
address receiverAddress,
address|[] calldata assets,
uint256[] calldata amounts,
uint256[] calldata modes,
address onBehalfOf,
bytes calldata params,
uint16 referralCode

) external;

function deposit(
address _asset,
uint256 _amount,
address _onBehalfOf,
uint16 _referralCode
) external;

function withdraw(
address _asset,
uint256 _amount,
address _to

) external;

function borrow(
address _asset,
uint256 _amount,
uint256 _interestRateMode,
uint16 _referralCode,
address _onBehalfOf

) external;

function repay(
address _asset,
uint256 _amount,
uint256 _rateMode,
address _onBehalfOf

) external;

function setUserUseReserveAsCollateral(address _asset, bool _useAsCollateral) external;

Methods: withdraw() , repay() return uint2s6 in the original implementation for Aave, see:
https://etherscan.io/address/0Oxc6845a5c768bf8d7681249f8927877efda425baf#code
The 1LendingPool configured for Geist:

Methods withdraw() , repay() return uint2s6 in the original implementation for Geist, see:
https://ftmscan.com/address/0x3104ad2aadb6fe9df166948a5e3a547004862f90#code

Note: that the actual amount withdrawn does not necessarily need to match the amount provided with the function argument.
Here's an excerpt of the upstream LendingProvider.withdraw() :

if (amount == type(uint256).max) {
amountToWithdraw = userBalance;

return amountToWithdraw;

And here’s the code in Fuji that calls that method. This will break the withdrawa1l functionality of LendingProvider if token isFtm .

code/contracts/fantom/providers/ProviderGeist.sol:L151-L165

function withdraw(address _asset, uint256 _amount) external payable override {
IAavelendingPool aave = IAavelendingPool(_getAaveProvider().getLendingPool());

bool isFtm = _asset == _getFtmAddr();
address _tokenAddr = isFtm ? _getWftmAddr() : _asset;

aave.withdraw(_tokenAddr, _amount, address(this));

// convert WFTM to FTM

if (isFtm) {
address unwrapper = _getUnwrapper();
IERC20(_tokenAddr) .univTransfer(payable(unwrapper), _amount);
IUnwrapper (unwrapper) .withdraw(_amount);

}

Similar for repay() , which returns the actual amount repaid.

Recommendation

e Always use the original interface unless only a minimal subset of functions is used.
e Use the original upstream interfaces of the corresponding project (link via the respective npm packages if available).

e Avoid omitting parts of the function declaration! Especially when it comes to return values.


https://etherscan.io/address/0xc6845a5c768bf8d7681249f8927877efda425baf#code
https://ftmscan.com/address/0x3104ad2aadb6fe9df166948a5e3a547004862f90#code

e Check return values. Use the value returned from withdraw() AND repay()

411 Missing slippage protection for rewards swap edium
Description

In FujivaultFTM.harvestRewards a swap transaction is generated using a call to swapperFTM.getswapTransaction . In all relevant scenarios,
this call uses a minimum output amount of zero, which de-facto deactivates slippage checks. Most values from harvesting
rewards can thus be siphoned off by sandwiching such calls.

Examples
amountoutMin iSs e , effectively disabling slippage control in the swap method.

code/contracts/fantom/SwapperFTM.sol:L49-L55

transaction.data = abi.encodeWithSelector(
IUniswapV2Router01.swapExactETHForTokens.selector,
9,
path,
msg.sender,
type(uint256) .max

)
Only success required

code/contracts/fantom/FujiVaultFTM.sol:L565-L567

(success, ) = swapTransaction.to.call{ value: swapTransaction.value }(swapTransaction.data);
require(success, "failed to swap rewards");

Recommendation
Use a slippage check such as for liquidator swaps:

code/contracts/fantom/FliquidatorFTM.sol:L476-L479

require(
(priceDelta * SLIPPAGE_LIMIT_DENOMINATOR) / priceFromOracle < SLIPPAGE_LIMIT_NUMERATOR,
Errors.VL_SWAP_SLIPPAGE_LIMIT_EXCEED

)

Or specify a non-zero amountoutMin argument in calls tO IuniswapV2Router@1.swapExactETHForTokens .

412 Unpredictable behavior due to admin front running or general bad timing wedium
Description

In several cases, the owner of deployed contracts can update or upgrade things in the system without warning. This has the
potential to violate a security goal of the system.

Specifically, contract owners (a 2/3 EOA Gnosis Multisig) could use front running to make malicious changes just ahead of
incoming transactions, or purely accidental adverse effects could occur due to unfortunate timing of changes.

Some instances of this are more important than others, but in general, users of the system should have assurances about the
behavior of the action they’re about to take.

Examples
® FujiAdmin

The owner Of FujiAdmin IS ©x@e1484c9a9f9b31ff19300f082e843415a575f4f and this address is a proxy to a Gnosis Safe: Mastercopy 1.2.0
implementation, requiring 2/3 signatures to execute transactions. All three signees are EOA’s.

code/artifacts/1-core.deploy:L958-L960
"FujiAdmin": {

"address": "Ox4cB46032e2790D8CA10be6d0001e8c6362a76adA",
"abi": [

11. owner ¥

Returns the address of the current ownetr.

0x0e1484c9a9f9b31f19300f082e843415a575f4f address

9. getOwners +

0x6a6d0b4b0558158f23e67912c0f3ed3bdc3f7bed, Oxbb67c265e7197a7¢3cd458f8f7c1d79a2fb04d57, 0x96a82d7a437028afa84775edd042e8¢c3c7a534ca
address|[]

10. getThreshold ¥

2uint256



® Controller , FujiOracle

The owner of controller seems to be a single EOA:

https://etherscan.io/address/0x3f366802F4e7576FC5DAA82890Cc6e04c85f3736#readContract

The owner of Fujioracle seems to be a single EOA:

https://etherscan.io/address/OxadF849079d415157CbBdb21BB7542b47077734A8#readContract

The owner of Frujierc1155 seems to be a single EOA:

https://etherscan.io/address/Oxa2d62f8b02225fbFA1cf8bF206C8106bDF4c692b#readProxyContract
® Fujiadmin (fantom)

Deployer is 0xb98d4D4e205afF4d4755E9Df19BDOB8BD4e0f148 which is an EOA.

code/artifacts/250-core.deploy:L1-L5

{
"FujiAdmin": {
"address": "OxaAb2AAfBFf7419Ff85181d3A846bA9645803dd67 ",
"deployer": "0xb98d4D4e205afF4d4755E9Df19BDOB8BD4e0f 148",
"abi": |

FujiAdmin.owner is Ox40578f7902304e0e34d7069fb487ee57f841342e which is a GnosisSafeProxy

& C @ ftmscan.com/address/OxaAb2AAfBFf7419Ff85181d3A846bA9045803dd67#readProxyContract

Code | | Read Contract | = Write Contract RGCELERIE AR Write as Proxy (ED

6. getVaultHarvester

0x376c0aa9150095cb36adcd472be390d31c6bef8f address

7. owner

0x40578f7902304e0e34d7069fb487ee57f841342e address

Recommendation

The underlying issue is that users of the system can’t be sure what the behavior of a function call will be, and this is because the
behavior can change at any time.

We recommend giving the user advance notice of changes with a time lock. For example, all oniyowner functionality requires two
steps with a mandatory time window between them. The first step merely tells users that a particular change is coming, and the
second step commits that change after a reasonable waiting period.

413 FujiOracle - _getUSDPrice does not detect stale oracle prices; General Oracle Risks wediim

Description

The external Chainlink oracle, which provides index price information to the system, introduces risk inherent to any dependency
on third-party data sources. For example, the oracle could fall behind or otherwise fail to be maintained, resulting in outdated
data being fed to the index price calculations. Oracle reliance has historically resulted in crippled on-chain systems, and
complications that lead to these outcomes can arise from things as simple as network congestion.

This is more extreme in lesser-known tokens with fewer ChainLink Price feeds to update the price frequently.

Ensuring that unexpected oracle return values are correctly handled will reduce reliance on off-chain components and increase
the resiliency of the smart contract system that depends on them.

The codebase, as is, relies on chainLinkoracle.latestRoundbata() and does not check the timestamp Or answeredin round of the returned
price.

Examples
e Here’s how the oracle is consumed, skipping any fields that would allow checking for stale data:

code/contracts/FujiOracle.sol:L66-L77

/**
* @dev Calculates the USD price of asset.
* @param _asset: the asset address.
*# Returns the USD price of the given asset

*/
function _getUSDPrice(address _asset) internal view returns (uint256 price) {
require(usdPriceFeeds[_asset] != address(@), Errors.ORACLE_NONE_PRICE_FEED);
(, int256 latestPrice, , , ) = AggregatorV3Interface(usdPriceFeeds[_asset]).latestRoundData();

price = uint256(latestPrice);

}

e Here's the implementation of the v0.6 FluxAggregator Chainlink feed with a note that timestamps should be checked.

contracts/src/v0.6/FluxAggregator.sol:L489-L490


https://etherscan.io/address/0x3f366802F4e7576FC5DAA82890Cc6e04c85f3736#readContract
https://etherscan.io/address/0xadF849079d415157CbBdb21BB7542b47077734A8#readContract
https://etherscan.io/address/0xa2d62f8b02225fbFA1cf8bF206C8106bDF4c692b#readProxyContract
https://ftmscan.com/address/0xb98d4d4e205aff4d4755e9df19bd0b8bd4e0f148
https://ftmscan.com/address/0x40578f7902304e0e34d7069fb487ee57f841342e

* @return updatedAt is the timestamp when the round last was updated (i.e.
* answer was last computed)

Recommendation

Perform sanity checks on the price returned by the oracle. If the price is older, not within configured limits, revert or handle in
other means.

The oracle does not provide any means to remove a potentially broken price-feed (e.g., by updating its address to address(e) or
by pausing specific feeds or the complete oracle). The only way to pause an oracle right now is to deploy a new oracle contract.
Therefore, consider adding minimally invasive functionality to pause the price-feeds if the oracle becomes unreliable.

Monitor the oracle data off-chain and intervene if it becomes unreliable.
On-chain, realistically, both answeredinround and updatedat must be checked within acceptable bounds.

* answeredInRound == latestRound - iN this case, data may be assumed to be fresh while it might not be because the feed was
entirely abandoned by nodes (no one starting a new round). Also, there’s a good chance that many feeds won't always be
super up-to-date (it might be acceptable to allow a threshold). A strict check might lead to transactions failing (race; e.g.,
round just timed out).

® roundId + threshold >= answeredInRound - Would allow a deviation of threshold rounds. This check alone might still result in stale
data to be used if there are no more rounds. Therefore, this should be combined with updatedat + threshold >= block.timestamp .

414 Unclaimed or front-runnable proxy implementations wedgium
Description

Various smart contracts in the system require initialization functions to be called. The point when these calls happen is up to the
deploying address. Deployment and initialization in one transaction are typically safe, but it can potentially be front-run if the
initialization is done in a separate transaction.

A frontrunner can call these functions to silently take over the contracts and provide malicious parameters or plant a backdoor
during the deployment.

Leaving proxy implementations uninitialized further aides potential phishing attacks where users might claim that - just because a
contract address is listed in the official documentation/code-repo - a contract is a legitimate component of the system. At the
same time, it is ‘only” a proxy implementation that an attacker claimed. For the end-user, it might be hard to distinguish whether
this contract is part of the system or was a maliciously appropriated implementation.

Examples

code/contracts/mainnet/FujiVault.sol:L97-L102

function initialize(
address _fujiadmin,
address _oracle,
address _collateralAsset,
address _borrowAsset

) external initializer {

e rujivault Was initialized many days after deployment, and Fujivault inherits vaultBaseUpgradeable , Which exposes a delegatecall
that can be used to selfdestruct the contract’s implementation.

Transactions Internal Txns Contract Events Analytics Comments

15 Latest 3 from a total of 3 transactions

Txn Hash Method ® Block Age From Y To Y
0x6dd0bb1fda7c8f37b73... Renounce Ownersh... 22229133 97 days 19 hrs ago 0xb98d4d4e205aff4d475... IN [£) 0x8513c2db99df213887f...
0x020a456c81cb7f91446... Initialize 22182150 98 days 6 hrs ago 0xb98d4d4e205aff4d475... IN [5) 0x8513c2db99df213887f...
0x05a5888b2f138e17730... 0x60806040 19246488 128 days 20 hrsago 0xb98d4d4e205aff4d475... IN Create: FujiVaultFTM

Another rujivault was deployed by deployer initialized in a 2-step approach that can theoretically silently be front-run.

code/artifacts/250-core.deploy:L2079-L2079

"deployer": "0xb98d4D4e205afF4d4755E9Df19BDOB8BD4e0f 148",

Transactions of deployer:
https://ftmscan.com/txs?a=0xb98d4D4e205afF4d4755E9Df19BDOB8BD4e0f148&p=2
The specific contract was initialized 19 blocks after deployment.

https://ftmscan.com/address/0x8513¢c2db99df213887f63300b23c6dd31f1d14b0


https://ftmscan.com/txs?a=0xb98d4D4e205afF4d4755E9Df19BD0B8BD4e0f148&p=2
https://ftmscan.com/address/0x8513c2db99df213887f63300b23c6dd31f1d14b0

Transactions Internal Txns Contract @ Events Analytics Comments

1= Latest 2 from a total of 2 transactions

Txn Hash Method (O Block Age From Y To Y Value
Oxe2a771c82a4d8403cO... Initialize 23791636 81days16hrsago 0xb98d4d4e205aff4d475.. IN ) 0x45fbfd9742e63649b3a.. O FT}
Oxa76ca73278be2d61b2... 0x60806040 23791617 81ldaysl16hrsago 0xb98d4d4e205aff4d475... IN Create: FujiVaultFTM OFT?

[ Download CSV Export L. |

e rujiadminFTM (and others) don’t seem to be initialized. (low prior; no risk other than pot. reputational damage)

code/artifacts/250-core.deploy:L1-L7

{
"FujiAdmin": {
"address": "OxaAb2AAfBFf7419Ff85181d3A846bA9045863dd67",
"deployer": "0xb98d4D4e205afF4d4755E9Df19BDOB8BD4e0f 148",
"abi": [
{
"anonymous" : false,
Recommendation

It is recommended to use constructors wherever possible to immediately initialize proxy implementations during deploy-time.
The code is only run when the implementation is deployed and affects the proxy initializations. If other initialization functions are
used, we recommend enforcing deployer access restrictions or a standardized, top-level initialized boolean, set to true on the
first deployment and used to prevent future initialization.

Using constructors and locked-down initialization functions will significantly reduce potential developer errors and the possibility
of attackers re-initializing vital system components.

415 Unused Import s

Description
The following dependency is imported but never used:

code/contracts/mainnet/flashloans/Flasher.sol:L13-L13

import ./../interfaces/IFujiMappings.sol";

Recommendation

Remove the unused import.

416 WFTM - Use of incorrect interface declarations o™

Description

The wrrmunwrapper and various providers utilize the metH interface declaration for handling funds denoted in wrtm . However, the
WETH and WFTM implementations are different. wrtm returns uint2s6 values to indicate error conditions while the wetn contract
does not.

code/contracts/fantom/WFTMUnwrapper.sol:L7-L23

contract WFTMUnwrapper {
address constant wftm = 0x21be370D5312f44cB42ce377BC9b8aOcEF1A4C83;

receive() external payable {}

[ **
* @notice Convert WFTM to FTM and transfer to msg.sender
* @dev msg.sender needs to send WFTM before calling this withdraw
* @param _amount amount to withdraw.
*/
function withdraw(uint256 _amount) external {
IWETH(wftm) .withdraw(_amount);
(bool sent, ) = msg.sender.call{ value: _amount }("");
require(sent, "Failed to send FTM");

}

The wrtm contract on Fantom returns an error return value. The error return value cannot be checked when utilizing the 1wetH
interface for wrtm . The error return values are never checked throughout the system for wrtm operations. This might be
intentional to allow amount=e on weth to act as a NOOP similar to weth .

code/contracts/fantom/providers/ProviderGeist.sol:L115-L116

// convert FTM to WFTM
if (isFtm) IWETH(_tokenAddr).deposit{ value: _amount }();

Also see issues: issue 4.4, issue 4.5, issue 4.10


https://etherscan.io/address/0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2#code
https://ftmscan.com/address/0x21be370d5312f44cb42ce377bc9b8a0cef1a4c83#code

Recommendation

We recommend using the correct interfaces for all contracts instead of partial stubs. Do not modify the original function
declarations, e.g., by omitting return value declarations. The codebase should also check return values where possible or
explicitly state why values can safely be ignored in inline comments or the function’s natspec documentation block.

417 Inconsistent isFTM, isETH checks g

Description

LibUniversalERC20FTM.isFTM() and LibuniversalErc20.isETH() identifies native assets by matching against two distinct addresses while
some components only check for one.

Examples
The same is true for .

e rilasher Only identifies a native asset transfer by matching asset against _ETH - oxEeceeeEceeEcEeeEeEeEccEEEcceeEeceecceceEEeE While

univTransfer() identifies it using Ox0 || OxEeeeeEeeeEeEeeEeEeEeeEEEeeeeEeeeceeeecEEeE

code/contracts/mainnet/flashloans/Flasher.sol:L122-L141

function callFunction(
address sender,
Account.Info calldata account,
bytes calldata data
) external override {
require(msg.sender == _dydxSoloMargin && sender == address(this), Errors.VL_NOT_AUTHORIZED);
account;

FlashLoan.Info memory info = abi.decode(data, (FlashLoan.Info));

uint256 _value;

if (info.asset == _ETH) {
// Convert WETH to ETH and assign amount to be set as msg.value
_convertWethToEth(info.amount);
_value = info.amount;

} else {
// Transfer to Vault the flashloan Amount
// _value is 0
IERC20(info.asset).univTransfer(payable(info.vault), info.amount);

}

® | ibUniversalERC20

code/contracts/mainnet/libraries/LibUniversalERC20.sol:L8-L16

library LibUniversalERC20 {
using SafeERC26 for IERC20;

IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeeEeEeeEeEcEeeEEEeceeeEeeeeeeeEEEE) ;
TERC20 private constant _ZERO_ADDRESS = IERC20(0x0000000000000000000000000000000000000000) ;

function isETH(IERC20 token) internal pure returns (bool) {
return (token == _ZERO_ADDRESS || token == _ETH_ADDRESS);

¥
code/contracts/mainnet/libraries/LibUniversalERC20.sol:L26-L40

function univTransfer(
IERC20 token,
address payable to,
uint256 amount
) internal {
if (amount > 0) {
if (isETH(token)) {
(bool sent, ) = to.call{ value: amount }("");
require(sent, "Failed to send Ether");
} else {
token.safeTransfer(to, amount);

}

e There are multiple other instances of this

code/contracts/mainnet/Fliquidator.sol:L162-L162

uint256 _value = vAssets.borrowAsset == ETH ? debtTotal : ©;

Recommendation

Consider using a consistent way to identify native asset transfers (i.e. eth, F1M ) by using Libuniversalgrc20.iseTH() . Alternatively,
the system can be greatly simplified by expecting WFTM and only working with it. This simplification will remove all special cases
where the library must handle non-ERC20 interfaces.

418 FujiOracle - setPriceFeed should check asset and priceFeed decimals crm

Description



getPriceof() assumes that all price feeds return prices with identical decimals, but setpricereed does not enforce this. Potential
misconfigurations can have severe effects on the system’s internal accounting.

Examples

code/contracts/FujiOracle.sol:L27-L36

function setPriceFeed(address _asset, address _priceFeed) public onlyOwner {
require(_priceFeed !'= address(@), Errors.VL_ZERO_ADDR);
usdPriceFeeds[_asset] = _priceFeed;
emit AssetPriceFeedChanged(_asset, _priceFeed);

}

Recommendation

We recommend adding additional checks to detect unexpected changes in assets’ properties. Safeguard price feeds by
enforcing priceFeed == address(8) || priceFeed.decimals() == 8 . This allows the owner to disable a pricereed (setting it to zero) and
otherwise ensure that the feed is compatible and indeed returns 8 decimals.

419 Unchecked function return values for low-level calls

Description

It should be noted that the swapping and harvesting transactions sometimes return values to the function caller. While the low-
level call is checked for “success”, the return values are not actively handled. This can be intentional but should be verified.

Before calling the external contract, there is no check whether a contract is deployed at that address. Since destinations seem to
be hardcoded in the Swapper/Harvester modules, we assume this has been ensured before deploying the contract. However, we
suggest checking that code is deployed at the destination address, especially for upgradeable contracts.

We raise this as an informational finding as both the Harvester and Swapper flows using token.balanceof(this) , which might make
this check obsolete. However, potential future third-party Swapper/Harvester additions to the protocol might return error codes
that need to be checked for.

Examples
e Geist/Uniswap and wrtv methods may return amounts or error codes

code/contracts/fantom/FujiVaultFTM.sol:L549-L551

(bool success, ) = harvestTransaction.to.call(harvestTransaction.data);
require(success, "failed to harvest rewards");

code/contracts/fantom/FujiVaultFTM.sol:L565-L567

(success, ) = swapTransaction.to.call{ value: swapTransaction.value }(swapTransaction.data);
require(success, "failed to swap rewards");

4.20 Use the compiler to resolve function selectors for interfaces

Description

Function signatures of known contract and interface types are available to the compiler. We recommend using
abi.encodeWithSelector(IProvider.withdraw.selector, ...) instead of the more error prone

abi.encodeWithSignature("withdraw(address,uint256)", ...) equivalent. Using the former method avoids hard-to-detect errors stemming
from typos, interface changes, etc.

Examples

code/contracts/abstracts/vault/VaultBaseUpgradeable.sol:L57-L84



[ **
* @dev Executes withdraw operation with delegatecall.
* @param _amount: amount to be withdrawn
*# @param _provider: address of provider to be used
*/
function _withdraw(uint256 _amount, address _provider) internal {
bytes memory data = abi.encodeWithSignature(
"withdraw(address,uint256)",
vAssets.collateralAsset,
_amount
IE
_execute(_provider, data);

}

VEZ
* @dev Executes borrow operation with delegatecall.
* @param _amount: amount to be borrowed
* @param _provider: address of provider to be used
*/
function _borrow(uint256 _amount, address _provider) internal {
bytes memory data = abi.encodeWithSignature(
"borrow(address,uint256)",
vAssets.borrowAsset,
_amount
IE
_execute(_provider, data);

}

4.21 Reduce code complexity
Description

Throughout the codebase, snippets of code and whole functions have been copy-pasted. This duplication significantly increases
code complexity and the potential for bugs. We recommend re-using code across modules or providing library contracts that
implement re-usable code fragments.

Examples
e Providers should use Libuniversalerc2ertd.isFTM instead of re-implementing Helper.isFTm .

code/contracts/fantom/providers/ProviderCream.sol:L17-L19

function _isFTM(address token) internal pure returns (bool) {
return (token == address(@) || token == address(OxFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF));

code/contracts/fantom/providers/ProviderScream.sol:L17-L19

function _isFTM(address token) internal pure returns (bool) {
return (token == address(@) || token == address(OxFFfFfFffFFfffFFfFFfFFFFFffFFFffffFfFFFfF)) ;

e providerGeist Should provide an internal method instead of implementing multiple variants of the isFtm to token address
mapping. E.g., both calls do the same thing. They select a different return value from the external call. Avoid re-implementing
an inconsistent isrtm variant. Require that isFtm && amount !'= @ ON deposit/payback .

code/contracts/fantom/providers/ProviderGeist.sol:L57-L67

function getBorrowBalance(address _asset) external view override returns (uint256) {

TIAaveDataProvider aaveData = _getAaveDataProvider();
bool isFtm = _asset == _getFtmAddr();
address _tokenAddr = isFtm ? _getWftmAddr() : _asset;

(, , uint256 variableDebt, , , , , , ) = aaveData.getUserReserveData(_tokenAddr, msg.sender);

return variableDebt;

code/contracts/fantom/providers/ProviderGeist.sol:L43-L52

function getBorrowRateFor(address _asset) external view override returns (uint256) {
IAaveDataProvider aaveData = _getAaveDataProvider();

(, , , , uint256 variableBorrowRate, , , , , ) = IAaveDataProvider(aaveData).getReserveData(
_asset == _getFtmAddr() ? _getWftmAddr() : _asset

),

return variableBorrowRate;

Also, note the unnecessary double cast 1aavebataProvider .

code/contracts/fantom/providers/ProviderGeist.sol:L73-L87



function getBorrowBalanceOf(address _asset, address _who)

external
view
override
returns (uint256)
{
TIAaveDataProvider aaveData = _getAaveDataProvider();
bool isFtm = _asset == _getFtmAddr();

address _tokenAddr = isFtm ? _getWftmAddr() : _asset;
(, , uint256 variableDebt, , , , , , ) = aaveData.getUserReserveData(_tokenAddr, _who);

return variableDebt;

e Consider removing support for the native currency altogether in favor of only accepting pre-wrapped wrtm ( wetH ). This
should remove a lot of glue code currently implemented to auto-wrap/unwrap native currency.

e Unused functionality

code/contracts/fantom/providers/ProviderCream.sol:L52-L57

function _exitCollatMarket(address _cyTokenAddress) internal {
// Create a reference to the corresponding network Comptroller
IComptroller comptroller = IComptroller(_getComptrollerAddress());

comptroller.exitMarket(_cyTokenAddress);

}

4.22 Unusable state variable in dYdX provider
Description
Remove the state variable donothing . Providers are always called via staticcall or delegatecall and should not hold any state.

code/contracts/mainnet/providers/ProviderDYDX.sol:L93-L95

bool public donothing = true;

4.23 Use enums instead of hardcoded integer literals
Description

Hardcoded integers are used throughout the codebase to denote states and distinguish between states. The code’s complexity
can be significantly reduced by using descriptive enum values.

Examples
e 2 should be 1interestRateMode.VARIABLE

code/contracts/fantom/providers/ProviderGeist.sol:L184-L184

aave.repay(_tokenAddr, _amount, 2, address(this));

code/contracts/fantom/providers/ProviderGeist.sol:L136-L136

aave.borrow(_tokenAddr, _amount, 2, 0, address(this));

® _farmProtocolNum and harvestType should be refactored to their enum equivalents:

code/contracts/mainnet/Harvester.sol:L20-L32

if (_farmProtocolNum == 0) {
transaction.to = 0x3d9819210A31b4961b30EF54bE2aeD79B9¢c9Cd3B;
transaction.data = abi.encodeWithSelector (
bytes4(keccak256("claimComp(address)")),
msg.sender
)5
claimedToken = Bxc00e94Ch662C3520282E615717214004A7126888 ;
} else if (_farmProtocolNum == 1) {
uint256 harvestType = abi.decode(_data, (uint256));

if (harvestType == 0) {

// claim
(, address[] memory assets) = abi.decode(_data, (uint256, address[]));

e label the flashloan providers with an enum representing their name

code/contracts/fantom/flashloans/FlasherFTM.sol:L72-L78



if (_flashnum == @) {
_initiateGeistFlashLoan(info);

} else if (_flashnum == 2) {
_initiateCreamFlashLoan(info);

} else {
revert(Errors.VL_INVALID_FLASH_NUMBER) ;

4.24 Redundant harvest check in vault
Description

In the FujivaultFTM.harvestRewards function, the check for a returned token’s address in the if condition and require Statement
overlap with tokenReturned != address(®) .

Examples

code/contracts/mainnet/FujiVault.sol:L553-L555

if (tokenReturned !'= address(0)) {
uint256 tokenBal = IERC20Upgradeable(tokenReturned).univBalanceOf(address(this));
require(tokenReturned != address(@) && tokenBal > @, Errors.VL_HARVESTING_FAILED);

Recommendation

We recommend removing one of the statements for gas savings and increased readability.

4.25 Redundant use of immutable for constants

Description

The FriasherFTM contract declares immutable state variables even though they are never set in the constructor. Consider declaring
them as constant instead unless they are to be set on construction time. See the Solidity Documentation for further details:

[...] For constant variables, the value has to be fixed at compile-time, while for immutable, it can still be assigned at
construction time. [...]

Examples

code/contracts/mainnet/flashloans/Flasher.sol:L37-L44

address private immutable _aavelLendingPool = 0x7d2768dE32b0b80b7a3454c06BdAc94A69DDCc7A9;
address private immutable _dydxSoloMargin = 0x1E0447b19BB6EcFdAe1e4AE1694b0C3659614e4e;

// IronBank
address private immutable _cyFlashloanLender = 0x1a21Ab52d1Ca1312232a72f4cf4389361A479829;
address private immutable _cyComptroller = 0xAB1c342C7bf5Ec5F02ADEA1¢c2270670bCa144ChB;

// need to be payable because of the conversion ETH <> WETH

code/contracts/fantom/flashloans/FlasherFTM.sol:L36-L39

address private immutable _geistlLendingPool
IFujiMappings private immutable _crMappings
IFujiMappings(0x1eEdE44b91750933C96d2125b6757C4F89e63E20) ;

0x9FAD241572045¢c7869117160A571B2e50b10d068 ;

4.26 Redeclaration of constant values in multiple contracts
Description

Throughout the codebase, constant values are redeclared in various contracts. This duplication makes the code harder to
maintain and increases the risk for bugs. A central contract, e.g., constants.sol , ConstantsFTM.sol , and constantsETH.sol , to declare the
constants used throughout the codebase instead of redeclaring them in multiple source units can fix this issue. Ideally, for
example, an address constant for an external component is only configured in a single place but consumed by multiple
contracts. This will significantly reduce the potential for misconfiguration.

Avoid hardcoded addresses and use meaningful, constant names for them.
Note that the solidity compiler is going to inline constants where possible.

Examples

code/contracts/mainnet/WETHUnwrapper.sol:L7-L9

contract WETHUnwrapper {
address constant weth = 0xC02aaA39b223FE8DOAOe5C4F27eAD9083C756Cc2;

code/contracts/mainnet/Swapper.sol:L16-L19

address public constant ETH = OxEeeeeEeeeEeEecEeEeEecEEEeeceecEeeeeceeeEEeE;
address public constant WETH = 0xC02aaA39b223FE8DOAOe5C4F27eAD9083C756Cc2;
address public constant SUSHI_ROUTER_ADDR = 0xd9e1cE17f2641f24aE83637ab66a2cca9C378B9F ;

code/contracts/mainnet/FujiVault.sol:L32-L34


https://docs.soliditylang.org/en/v0.8.12/contracts.html#constant-and-immutable-state-variables

address public constant ETH = OxEeeeeEeeeEcEecEeEcEceEEEeceeceEeceeceeceeEEeE;

code/contracts/mainnet/Fliquidator.sol:L31-L31

address public constant ETH = OxEeeeeEeeeEecEecEeEcEceEEEeceeeEeceeceeceeEEeE;

code/contracts/mainnet/providers/ProviderCompound.sol:L14-L18

contract HelperFunct {
function _isETH(address token) internal pure returns (bool) ({
return (token == address(0) || token == address(OxEeeeeEeeeEeEeeEecEcEeceEEEceeeEeeeeeeeEEeE)) ;

code/contracts/mainnet/libraries/LibUniversalERC20.sol:L10-L14

IERC20 private constant _ETH_ADDRESS = IERC20(0xEeeeeEeeecEeEeeEeEeEeeEEEeeeecEeeeeeeeEEeE) ;
TERC20 private constant _ZERO_ADDRESS = IERC20(0x0000000000000000000000000000000000000000 ) ;

function isETH(IERC20 token) internal pure returns (bool) {

code/contracts/mainnet/flashloans/Flasher.sol:L34-L36

address private constant _ETH = OxEeeeeEeeeEeEeeEcEeEeecEEEeeceecEeceeeceeceEEeE;
address private constant _WETH = 0xC02aaA39b223FE8DOA0e5C4F27eAD9083C756Cc2;

e Use meaningful names instead of hardcoded addresses

code/contracts/mainnet/Harvester.sol:L20-L29

if (_farmProtocolNum == 0) {
transaction.to = 0x3d9819210A31b4961b30EF54bE2aeD79B9¢c9Cd3B;
transaction.data = abi.encodeWithSelector(
bytes4(keccak256("claimComp(address)")),
msg.sender
);
claimedToken = 8xc00e94Cbh662C3520282E615717214004A7126888 ;
} else if (_farmProtocolNum == 1) {
uint256 harvestType = abi.decode(_data, (uint256));

e Avoid unnamed hardcoded inlined addresses

code/contracts/fantom/providers/ProviderCream.sol:L157-L162

if (_isFTM(_asset)) {
// Transform FTM to WFTM
IWETH(Ox21be370D5312f44cB42ce377BC9b8aBcEF1A4C83) .deposit{ value: _amount }();
_asset = address(0x21be370D5312f44cB42ce377BC9b8aOCEF1A4C83) ;

e comptroller address - can also be private constant state variables as the compiler/preprocessor will inline them.

code/contracts/fantom/providers/ProviderCream.sol:L21-L31

function _getMappingAddr() internal pure returns (address) {
return 0x1eEdE44b91750933C96d2125b6757C4F89e63E20; // Cream fantom mapper

function _getComptrollerAddress() internal pure returns (address) {
return 0x4250A6D3BD57455d7C6821eECh6206F507576cD2; // Cream fantom

function _getUnwrapper() internal pure returns(address) {
return 0xee94A39D185329d8c46dEA726E01F91641E57346 ;

e wrtv multiple re-declarations

code/contracts/fantom/WFTMUnwrapper.sol:L7-L9

contract WFTMUnwrapper {
address constant wftm = 0x21be370D5312f44cB42ce377BC9b8a0OcEF1A4C83;

code/contracts/fantom/providers/ProviderGeist.sol:L27-L29

function _getWftmAddr() internal pure returns (address) {
return 0x21be370D5312f44cB42ce377BC9b8aBCcEF1A4C83;

code/contracts/fantom/providers/ProviderCream.sol:L79-L81



IWETH(0x21be370D5312f44cB42ce377BC9b8aBcEF1A4C83) .deposit{ value: _amount }();
_asset = address(0x21be370D5312f44cB42ce377BC9b8a0CEF1A4C83) ;

4.27 Always use the best available type
Description

Declare state variables with the best type available and downcast to address if needed. Typecasting inside the corpus of a
function is unneeded when the parameter’s type is known beforehand. Declare the best type in function arguments, state vars.
Always return the best type available instead of falling back to address .

Examples
There are many more instances of this, but here’s a list of samples:
e Should be declared with the correct types/interfaces instead of address

code/contracts/FujiAdmin.sol:L14-L20

address private _flasher;

address private _fliquidator;
address payable private _ftreasury;
address private _controller;
address private _vaultHarvester;

e Should return the correct type/interfaces instead of address

code/contracts/FujiAdmin.sol:L144-L147

*/
function getSwapper() external view override returns (address) {
return _swapper;

e Should declare the argument with the correct type instead of casting in the function body.

code/contracts/Controller.sol:L73-L80

function doRefinancing(
address _vaultAddr,
address _newProvider,
uint8 _flashNum
) external isValidVault(_vaultAddr) onlyOwnerOrExecutor {

IVault vault = IVault(_vaultAddr);

e Should make the Fujivaultrtm.fujierc1155 state variable of type 1rujiercii1ss

code/contracts/fantom/FujiVaultFTM.sol:L438-L445

IFujiERC1155(fujiERC1155) .updateState(
vAssets.borrowlD,
IProvider(activeProvider).getBorrowBalance(vAssets.borrowAsset)

IE

IFujiERC1155(fujiERC1155) .updateState(
vAssets.collaterallD,
IProvider(activeProvider).getDepositBalance(vAssets.collateralAsset)

)

e Return the best type available

code/contracts/fantom/providers/ProviderCream.sol:L25-L31

function _getComptrollerAddress() internal pure returns (address) {
return 0x4250A6D3BD57455d7C6821eECh6206F507576cD2; // Cream fantom

function _getUnwrapper() internal pure returns(address) {
return 0xee94A39D185329d8c46dEA726E01F91641E57346 ;

Appendix 1 - Files in Scope

This audit covered the following files:

File SHA-1 hash
./contracts/Controller.sol ff7ac267bcB8adeb710e7ab78b8d9b881827680
./contracts/fantom/flashloans/FlasherFTM.sol 5da4d3a4b796cd63255bf652d924bBa2fcfc9058
./contracts/fantom/FliquidatorFTM.sol 593c2f2d376fd9e7fdcf4ac7bh6478a36€6830861
./contracts/fantom/FujiVaultFTM.sol d360a1c97047cc14b91f13a24fe8277¢c652965aa

./contracts/fantom/libraries/LibUniversalERC20FTM.sol 33d1c1e58b19ef03d2d19177097b9fe3b66db166



File SHA-1 hash

./contracts/fantom/libraries/LibUniversalERC208UpgradeableFTM.sol be61be7ae35ddfe726b2¢c29915aa8329604d5a75
./contracts/fantom/providers/ProviderCream.sol b3c8e2c67187684e10d9282b19475d392¢c2788e3
./contracts/fantom/providers/ProviderGeist.sol 5ece3598215a92d822df9d1c44c1b10fb3ab6e65
./contracts/fantom/providers/ProviderScream.sol cdeB8eB390b40e75e5373aadee9b12b91e7805¢ccH
./contracts/fantom/SwapperFTM.sol 5eb0eB9f210a6b2dcOdc44debcd06338ddc379f1
./contracts/fantom/WFTMUnwrapper.sol b8d5842126b140€32¢cbh28425¢c1bd779366816359
./contracts/FujiAdmin.sol 4540517cd55d2daB8acB8124e25ce86¢cfe8cd46b
./contracts/FujiERC1155.s01 4e952b95ch@a242afcf4dbB9bd68718b7c963ccf
./contracts/FujiMapping.sol 021239€02a9bb2079616c85d71e032ecae709bc4
./contracts/FujiOracle.sol €0112d74aa3881da1704b9%efcba62377deb9842f

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

roweren av Y CONSENSYS



https://consensys.net/

