@Diligence

AUDITS

FUZZING SCRIBBLE ABOUT

Tinch Exchange AggregationRouter V5

1 Executive Summary

2 Scope

2.1 Objectives
3 Security Specification

4 1inch Contract

4.1 _WETH private constant
address in UnoswapRouter makes
for tricky deployments to other

chains ({1

4.2 Selfdestruct may be removed
as an opcode in future ({3

5 Limit Order Protocol

5.1 Malicious maker can take more
takers funds than taker expected

5.2 Invalidating users orders
Medium

5.3 Reentrancy potential issue for
contracts building on top
RFQOrderMixin ({3

5.4 Order cancellation event spam

in orderMixin ({3

5.5 Order book slippage (13

6 Solidity Utils

6.1 ECDSA library has a
vulnerability for signature
malleability of EIP-2098 compact
signatures

6.2 Ethereum reimbursements
sent to an incorrect address
Medium

6.3 ECDSA incorrect size provided
for calldata in the static call

Medium

6.4 Re-entrancy risk in UniERC20

Medium
Appendix 1 - Files in Scope

Appendix 2 - Disclosure

Date August 2022

George Kobakhidze,

Auditors e
Chingiz Mardanov

1 Executive Summary

This report presents the results of our engagement with 1linch to review AggregationRouter V5.

The review was conducted over two weeks, from August 15 2022 to September 16 2022 by Chingiz Mardanov and George
Kobakhidze. A total of 40 person-days were spent.

2 Scope

Our review focused on the following repositories and commit hashes:

e https://github.com/linch/linch-contract @ 3461c75d00481d111f0323d7e1cb6e56b0dc7ecO,
e https://github.com/linch/limit-order-protocol @ 403be0f583b863b3b13373c23e8f2652f5ef720d,
e https://github.com/linch/solidity-utils @ 32b04c767db00d4ddc2428534fd6e90abbacbi2e.

The list of files in scope can be found in the Appendix.

2.1 Objectives
Together with the 1linch team, we identified the following priorities for our review:

1. Ensure that the system is implemented consistently with the intended functionality, and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Security Specification

This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation. The purpose of this section is to identify specific security properties that were validated by the audit team.

General comments
Security Properties

linch team excelled at writing fast and efficient code that will minimize the gas cost for the end users of the protocol. A lot of
code was written in Yul and readability of the code fell victim as a result. This could eventually lead to code that is hard to audit,
jeopardizing the security of the protocol. We would also like to suggest increasing the amount of technical comments and
documentation available that would explain reasoning behind certain decisions saving code readers time, which could be both
future auditors, other systems integrating linch into their protocols, and even new hires for the linch team itself.

Limit Order Protocol V3
Actors

The relevant actors are listed below with their respective abilities:

e Maker - this is the actor responsible for placing orders. One could otherwise refer to makers as sellers. Makers typically will
format an order object, sign it and submit it to the linch backend server.

e Taker - this is the actor responsible for filling orders. Otherwise referred to as buyer. Takers find the attractive order via 1linch
services and then submit the fill transaction on chain, thus paying gas for the entire exchange.

e 1linch Team - the primary method of finding and communicating order hashes and their signatures between makers and
takers happens through the linch system. That system would allow to post information to it, and then, similarly, it would let
users read information from it, either through a front-end or an API call.

Trust Model

A lot of the infrastructure of 1linch Limit Order Protocol V3 is actually off chain. Both makers and takers will rely on the SDK to
place and fill orders to the 1inch system. In addition to that, a lot of the code depends on providing correct arguments to the
deployed contracts as well as generating correct ids. With increasing optimization, the complexity of parameters that are being
passed is concerning. Such complexity might eventually lead to a mistake in off-chain components that will get propagated into
the contracts. Users of linch must trust that the off-chain infrastructure is reliable, operates correctly, and provides the correct
data up to the specification declared by the linch team and their smart contracts. Due to this, the linch team is able to partially
censor, block, front-run and generally do whatever they want with access to the orders. While it is true that users can share
orders and signatures in a P2P manner, and this service done by the linch team is needed and acts as a public good since the

https://github.com/1inch/1inch-contract
https://github.com/1inch/limit-order-protocol
https://github.com/1inch/solidity-utils
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

creation of orders is not on-chain and effectively gasless, this still introduces a centralization and a reliance vector on the linch
team’s systems, both in terms of trust and availability. None of the off-chain infrastructure was part of this engagement.

4 1inch Contract

Each issue has an assigned severity:

e [T issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium iSssues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

41 WETH private constant address in UnoswapRouter makes for tricky deployments to other
chains o

Resolution

The 1linch team acknowledged but is unable to implement changes due to stack-too-deep errors that would require a large
refactor of this already well-used and tested library.

To interact with WETH, the unoswaprouter uses a hardcoded _weth private constant in the contract. Therefore, this currently needs
changing every time the contract is deployed to a different chain, as noted by the comment within the contract:

linch-contract/contracts/routers/UnoswapRouter.sol:L24-L26

address private constant _WETH = 0xC02aaA39b223FE8DOABGe5C4F27eAD9083C756Cc2 ;

As the comment also points out, the choice to not make it an immutable variable is not possible since they are not supported in
assembly, and the unoswaprouter contract is highly efficient and almost entirely written in assembly. However, the other contracts
within the scope of this audit, do utilize setting a private immutable variable for WETH in the constructor, and some of them then
initialize a new address variable derived from this private immutable variable, thereby allowing the address variable to be used in the
assembly blocks instead:

UnoswapV3Router

linch-contract/contracts/routers/UnoswapV3Router.sol:L33-L37

IWETH private immutable _WETH;

constructor (IWETH weth) {
_WETH = weth;

}

ClipperRouter

linch-contract/contracts/routers/ClipperRouter.sol:L18-L24

IWETH private immutable _WETH;
IClipperExchangeInterface private immutable _clipperExchange;

constructor (IWETH weth, IClipperExchangeInterface clipperExchange) {
_clipperExchange = clipperExchange;
_WETH = weth;

linch-contract/contracts/routers/ClipperRouter.sol:L101

address weth = address(_WETH);

linch-contract/contracts/routers/ClipperRouter.sol:L112

if iszero(call(gas(), weth, 0, ptr, 0x64, 0, 0)) {

OrderMixin

limit-order-protocol/contracts/OrderMixin.sol:L63-L70

IWETH private immutable _WETH;

mapping(bytes32 => uint256) private _remaining;

constructor (IWETH weth) {
_WETH = weth;

}

Normalizing this process across all smart contracts in the linch system could help avoid accidental mistakes when the deployer
could forget to first edit the unoswap contract to have the correct address.

4.2 Selfdestruct may be removed as an opcode in future grm

Resolution

The 1linch team acknowledged and noted.

The AaggregationRoutervs contract implements a function called destroy that calls a selfdestuct on the contract with the msg.sender as
the argument, that is checked by the oniyowner modifier on the function.

linch-contract/contracts/AggregationRouterV5.sol:L35-L37

function destroy() external onlyOwner {
selfdestruct(payable(msg.sender));

}

However, there are discussions currently around removing the seifdestruct functionality from the EVM altogether with various
motivations and rationale provided, such as this being not possible with Verkle trees and it being a requirement for stateleness.
Link to the EIP is below: https://eips.ethereum.org/EIPS/eip-4758

It appears that the suggested remediation of this functionality per the EIP-4758 will not significantly change the results, for
example all of the funds will still be sent to the specified address, but the destruction of the actual contract will not occur. So this
is just an advisory note for the 1linch team to notify of this potential change in the future.

5 Limit Order Protocol

Each issue has an assigned severity:

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e 'Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 Malicious maker can take more takers funds than taker expected ==

Resolution

Remediated as per the linch team in linch/limit-order-protocol@ oddcess by adding a check that reverts when

actualTakingAmount > takingAmount

orderMixin contract allows users to match makers(sellers) and takers(buyers) in an orderbook-like manner. One additional feature
this contract has is that both makers and takers are allowed to integrate hooks into their orders to better react to market
conditions and manage funds on the fly. Two out of many of these hooks are called: _getMakingAmount and _getTakingAmount . Those
particular hooks allow the maker to dynamically respond to the making or taking amounts supplied by the taker. Essentially they
allow overriding the rate that was initially set by the maker when creating an order up to a certain extent. To make sure that the
newly suggested maker rate is reasonable taker also provides a threshold value or in other words the minimum amount of assets
the taker is going to be fine receiving.

Generally speaking, the maker can override the taking amount offered to the taker if the buyer passed a specific making amount
in the fill transaction and vice versa. But there is one special case where the maker will be able to override both, which when
done right will force the taker to spend an amount larger than the one intended. Specifically, this happens when the taker passed
the desired taking amount and the maker returns a suggested making amount that is larger than the remaining order size. In this
case, the making amount is being set to the remaining order amount and the taking is being recomputed.

limit-order-protocol/contracts/OrderMixin.sol:L214-L217

actualMakingAmount = _getMakingAmount(order.getMakingAmount(), order.takingAmount, actualTakingAmount, order.makingAmount, remai
if (actualMakingAmount > remainingMakingAmount) {

actualMakingAmount = remainingMakingAmount;

actualTakingAmount = _getTakingAmount(order.getTakingAmount(), order.makingAmount, actualMakingAmount, order.takingAmount, r

Essentially this allows the maker to override the taker amount and as long as the maker keeps the price intact or changed within a
certain threshold like described in this issue, they can take all taking tokens of the buyer up to an amount of the token balance or
approval limit whatever comes first.

Consider the following example scenario:

e The maker has a large order to sell 100 ETH on the order book for 100 DAI each.

e The taker then wants to partially fill the order and buy as much ETH as 100 DAI will buy. At the same time taker has 100,000
DAl in the wallet.

When taker tries to fill this order taker passes the takingamount to be 100. Since OrderMixin received the taking amount we go this
route:

https://eips.ethereum.org/EIPS/eip-4758
https://github.com/1inch/limit-order-protocol/commit/9ddc086dc8ee377ae7966e013213977d732ba865

limit-order-protocol/contracts/OrderMixin.sol:L214

actualMakingAmount = _getMakingAmount(order.getMakingAmount(), order.takingAmount, actualTakingAmount, order.makingAmount,

remai

However, note that when executing the _getMakingamount() function, it first evaluates the order.getMakingAmount() argument which is

evaluated as bytes calldata _getter Within the function.

limit-order-protocol/contracts/OrderMixin.sol:L324-L337

function _getMakingAmount (
bytes calldata getter,
uint256 orderTakingAmount,
uint256 requestedTakingAmount,
uint256 orderMakingAmount,
uint256 remainingMakingAmount,
bytes32 orderHash
) private view returns(uint256) {
if (getter.length == 0) {
// Linear proportion
return getMakingAmount(orderMakingAmount, orderTakingAmount, requestedTakingAmount);

}

return _callGetter(getter, orderTakingAmount, requestedTakingAmount, orderMakingAmount, remainingMakingAmount, orderHash);

That is because the order struct that is made and signed by the maker actually contains the necessary bytes within it that can be
decoded to construct a target and calldata for static calls, which in this case are supposed to be used to return the making asset

amounts that the maker determines to be appropriate, as seen in the comments under the uint256 offsets part of the struct.

limit-order-protocol/contracts/OrderLib.sol:L7-L27

library OrderLib {
struct Order {
uint256 salt;
address makerAsset:
address takerAsset;
address maker;
address receiver;
address allowedSender; // equals to Zero address on public orders
uint256 makingAmount;
uint256 takingAmount;
uint256 offsets;
// bytes makerAssetData;
// bytes takerAssetData;
// bytes getMakingAmount; // this.staticcall(abi.encodePacked(bytes, swapTakerAmount)) => (swapMakerAmount)
// bytes getTakingAmount; // this.staticcall(abi.encodePacked(bytes, swapMakerAmount)) => (swapTakerAmount)
// bytes predicate; // this.staticcall(bytes) => (bool)
// bytes permit; // On first fill: permit.1.call(abi.encodePacked(permit.selector, permit.2))
// bytes preInteraction;
// bytes postInteraction;

bytes interactions; // concat(makerAssetData, takerAssetData, getMakingAmount, getTakingAmount, predicate, permit, prelnte

Finally, if these bytes indeed contain data (i.e. length>0), they are passed to the _calicetter() function that asks the previously

mentioned target for the data.

limit-order-protocol/contracts/OrderMixin.sol:L354-L377

function _callGetter(
bytes calldata getter,
uint256 orderExpectedAmount,
uint256 requestedAmount,
uint256 orderResultAmount,
uint256 remainingMakingAmount,
bytes32 orderHash
) private view returns(uint256) {
if (getter.length == 1) {
if (OrderLib.getterIsFrozen(getter)) {
// 0On "x" getter calldata only exact amount is allowed

if (requestedAmount !'= orderExpectedAmount) revert WrongAmount();
return orderResultAmount;
} else {
revert WrongGetter();
}
} else {

(address target, bytes calldata data) = getter.decodeTargetAndCalldata();

(bool success, bytes memory result) = target.staticcall(abi.encodePacked(data, requestedAmount, remainingMakingAmoun

if (!success || result.length != 32) revert GetAmountCallFailed();
return abi.decode(result, (uint256));

However, since the getter is set in the order struct, and the order is set by the maker, the getter itself is entirely under the maker’s
control and can return whatever the maker wants, with no regard for the taker’s passed actualtakingAmount Or any arguments at all
for that matter. So, in our example, the return value could be 100.1 ETH, i.e. just above the total order size. That will get us on the

route of recomputing the taking amount since 100.1 is over the T00ETH remaining in the order.

limit-order-protocol/contracts/OrderMixin.sol:L217

actualTakingAmount = _getTakingAmount(order.getTakingAmount(), order.makingAmount, actualMakingAmount, order.takingAmount,

remai

This branch will set the actualmakingamount to T00ETH and then the malicious maker will say the actualtakingamount is 10000 DAI, this
can be done via the _getTakingamount static call in the same exact way as the making amount was manipulated.

Then the threshold check would look like this as defined by its formula:

limit-order-protocol/contracts/OrderMixin.sol:L222

if (actualMakingAmount #* takingAmount < thresholdAmount * actualTakingAmount) revert MakingAmountToolow();

ActualMakingAmount - TOOETH
ActualTakingAmount - TOOOO0ODAI
threshold - 1 ETH

takingAmount - 100 DAI

then: 1eeeTH » 100DAT < 1ETHx10000DAT This condition will be false so we will pass this check.
Then we proceed to taker interaction. Assuming the taker did not pass any interaction, the actualtakingamount Will not change.
Then we proceed to exchange tokens between maker and taker in the amount of actualtakingAmount and actualMakingAmount .

The scenario allows the maker to take the taker’s funds up to an amount of taker’s approval or balance. Essentially while taker
wanted to only spend 100 DAI, potentially they ended up spending much more. This paired with infinite approvals that are
currently enabled on the linch Ul could lead to funds being lost.

While this does not introduce a price discrepancy this attack can be profitable to the malicious actor. The attacker could put an
order to sell a large amount of new not trustworthy tokens for sale who's supply the attacker controls. Then after a short
marketing campaign when people will cautiously try to buy a small amount of those tokens for let’s say a small amount of USDC
due to this bug attacker could drain all of their USDC.

We advise that linch team treats this issue with extra care since a similar issue is present in a currently deployed production
version of linch OrderMixin. One potential solution to this bug is introducing a global threshold that would represent by how
much the actual taking amount can differ from the taker provided taking amount.

5.2 Invalidating users orders wedgium

linch team has implemented a more streamlined version of the order book that is called orderrramixin . This version has no hooks
and is meant to be more straightforward than the main order book contract.

One significant difference between those contracts is that the RFQ version invalidates the orders even after they have been only
partially filled.

limit-order-protocol/contracts/OrderRFQMixin.sol:L197-L203

{
uint256 info = order.info;
uint256 expiration = uint128(info) >> 64;
if (expiration '= @ && block.timestamp > expiration) revert OrderExpired();
_invalidateOrder(maker, info, @);
}

Since makers have to sign the orders, only makers can place the remainder of the original order as a new one. Given that
information, an attacker could take all the orders and fill them with 1 wei of taking assets. While this will cost an attacker gas, on
some chains it would be possible to make the operations of the protocol unreliable and impractical for makers.

One way to fix that without making significant changes to the logic is to introduce a threshold that will determine the smallest
taking amount for each order. That could be a percent of the taking amount specified in the order. This change will make the
attack more expensive and less likely to happen.

5.3 Reentrancy potential issue for contracts building on top RFQOrderMixin crm

Resolution

Remediated as per the linch team in linch/limit-order-protocol@ d39s7fe by forwarding a limited amount of gas to guard
against complex execution at the target but still allow for smart contract receipt that may require a bit more gas than usual
EOA receipts.

The rraordermixin contract is used to facilitate transfer of assets in RFQ orders between makers and takers. Naturally, one of such
possible assets could be the native coin of the chain, such as ETH. In order to perform these transfers, the contract currently
utilizes the target.call(){value:x} method to transfer X ETH to the target address. However, this also calls into the target address
and opens up arbitrary code execution that could lead to significant problems, that often times result in a reentrancy attack.

limit-order-protocol/contracts/OrderRFQMixin.sol:L233

(bool success,) = target.call{value: makingAmount}("");

While 1inch’s RFQOrderMixin contract doesn’t have a clear reentrancy attack vector, other smart contract systems that might
utilize Tinch RFQ orders will have to handle a potential reentrancy due to this problem. The impact for downstream systems could
be critical.

This could be changed to .transfer() or .send() methods of transferring ETH, or at least heavily noted in documentation for any
and all developers who may fork/utilize this code so reentrancy risks are made aware of.

https://github.com/1inch/limit-order-protocol/commit/d3957fe5dba79128ce8a43c7c37318c7065d2985

This does not seem to be a general-purpose use library for other systems, so likelihood of this issue happening isn’t as high as in
issue 6.4, so the severity is lower.

5.4 Order cancellation event spam in orderMixin ¢

The linch Limit Order protocol’s contracts utilize mechanisms to allow creation of orders without posting the orders on chain.
Indeed, the orders are created by signing order struct hashes off-chain by the maker, and then having takers pass the signatures
associated with those hashes to fill in those orders. However, a maker needs to be able to cancel their order if they change their
mind, which would require them to execute an on-chain transaction marking that order hash as invalid:

limit-order-protocol/contracts/OrderMixin.sol:L113-L121

function cancelOrder(OrderLib.Order calldata order) external returns(uint256 orderRemaining, bytes32 orderHash) {
if (order.maker != msg.sender) revert AccessDenied();

orderHash = hashOrder(order);

orderRemaining = _remaining[orderHash];

if (orderRemaining == _ORDER_FILLED) revert AlreadyFilled();
emit OrderCanceled(msg.sender, orderHash, orderRemaining);
_remaining[orderHash] = _ORDER_FILLED;

Unfortunately, since the OrderMixin contract is not aware of order hashes before interacting with them for the first time, it can
not verify that the order was actually ever seriously present or intended to be executed. As a result, this would allow users to
cancel non-existent orders and create event spam. While this would be costly to the spammer, it would nonetheless be possible.

The impact of this would need systems that rely on the ordercanceled event log to be aware of potential spam attacks with fake
order cancellation and not use them, for example, for analytics, potential volume forecasting, tracking order created -> order
cancelled metrics and so on.

5.5 Order book slippage

orderMixin contract allows users to match makers and takers in an orderbook-like manner. One additional feature this contract has
is that both makers and takers are allowed to integrate hooks into their orders to better react to market conditions and manage
funds on the fly. Two of these hooks are called: _getMakingAmount and _getTakingAmount .

When trying to fill an order taker is required to provide either the making amount or taking amount as well as the threshold or in
other words the minimum amount of assets the taker is going to be fine receiving. During the fill transaction, an order maker is
given the opportunity to update the offer by the means of the _getMakingAmount and _getTakingamount . A threshold checks are then
used in order to make sure that the updated values are within taker’s acceptable bounds:

limit-order-protocol/contracts/OrderMixin.sol:L222

if (actualMakingAmount * takingAmount < thresholdAmount * actualTakingAmount) revert MakingAmountToolow();

limit-order-protocol/contracts/OrderMixin.sol:L212

if (actualTakingAmount * makingAmount > thresholdAmount * actualMakingAmount) revert TakingAmountTooHigh();

It is reasonable to assume that if the maker knows the threshold the taker selected, the maker will attempt to update the making
or taking amount to maximize profits. While _getMakingAmount and _getTakingAmount do not pass the threshold selected by the taker
directly, it is still possible for the maker to obtain this information and act accordingly.

1. A malicious maker could listen to the mempool and wait for a transaction that is meant to fill his order obtaining the
threshold value.

2. Maker would then update the state of the contract that responds to the static call of the _getMakingAmount and _getTakingAmount
hooks.

If the maker is using FlashBots or a similar service, the maker can ensure that the above actions are performed before the
transaction that would fill the order.

While there is no good way to alleviate this issue given the current design we believe it is important to be aware of this issue and
allow the 1linch users to know that some analogy of slippage is still possible even on the orderbook-like system. This will allow
them to choose tighter and more secure threshold values.

6 Solidity Utils

Each issue has an assigned severity:

) issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers

should use their own judgment as to whether to address such issues.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [BM) issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be

exploited. All major issues should be addressed.

issues are directly exploitable security vulnerabilities that need to be fixed.

6.1 ECDSA library has a vulnerability for signature malleability of EIP-2098 compact signatures zm

Resolution

Remediated as per the linch team in linch/solidity-utils@ 1663530 by adding a warning note in the comments of the library
code.

The linch ECDSA library supports several types of signatures and forms in which they could be provided. However, for compact
signatures there is a recently found malleability attack vector. Specifically, the issue arises when contracts use transaction replay
protection through signature uniqueness (i.e. by marking it as used). While this may not be the case in the scope of other
contracts of this audit, this ECDSA library is meant to be a general use library so it should be fixed so as to not mislead others
who might use this.

For more details and context, find below the advisory notice and fix in the OpenZeppelin’s ECDSA library:
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/ GHSA-4h98-2769-gh6h
OpenZeppelin/openzeppelin-contracts@ d693ds9

6.2 Ethereum reimbursements sent to an incorrect address wedium

Resolution

Remediated as per the linch team as of linch/solidity-utils@ eb1asdf by adding the correct recipient of the refund.

linch team has written a library called unierc2e that extends the traditional ERC20 standard to also support eth transfers
seamlessly. In the case of the unitransferfrom function call, the library checks that the msg.value of the transaction is bigger or
equal to the amount passed in the function argument. If the msg.value is larger than the amount required, the difference, or extra
funds, should be sent to the sender. In the actual implementation Instead of returning the funds to the sender, extra funds are
actually sent to the destination.

solidity-utils/contracts/libraries/UniERC20.sol:L59-L65

if (msg.value > amount) {

unchecked {
(bool success,) = to.call{value: msg.value - amount}("");
if (!success) revert ETHSendFailed();

Given that this code is packed as a library and allows for easy reusability by the 1linch team and outside developers it is crucial
that this logic is written well and well tested.

We recommend reconsidering reimbursing the sender when an incorrect amount is being sent because it introduces an easy-to-
oversee reentrancy backdoor with ca11() that is mentioned in issue 6.4. Reverting was a default behavior in similar cases across
the rest of the linch contracts.

If this functionality is required, a fix we could recommend is replacing the to with from . We can also suggest running a fuzzing
campaign against this library.

6.3 ECDSA incorrect size provided for calldata in the static call wedium

Resolution

Remediated as per the linch team in linch/solidity-utils@ cfdcsse by passing the correct data size.

The ECDSA library implements support for IERC1271 interfaces that verify provided signature for the data through the different
isvalidsignature functions that depend on the type of signature used.

However, the library passes an incorrect size for the calldata in the static call for signatures that are of the form
(bytes32 r, bytes32 vs) . It should be Oxa4 (164 bytes) instead of Oxa5 (165 bytes).

solidity-utils/contracts/libraries/ECDSA.sol:L178

if staticcall(gas(), signer, ptr, 0xa5, 0, 0x20) {

The impact could vary and depends on the signature verifier. For example, it could be significant if the signature verifier performs
a check on the calldatasize for this specific type of signature and reverts on incorrect sizes, thereby having valid signatures return
false When passed to isvalidSignature .

6.4 Re-entrancy risk in UniERC20 iedgium

Resolution

Remediated as per the linch team in linch/solidity-utils@ ebiasdf by forwarding a limited amount of gas to guard against
complex execution at the target but still allow for smart contract receipt that may require a bit more gas than usual EOA
receipts.

UniERC20 is a general library for facilitating transfers of any ERC20 or native coin assets. It features gas-efficient code and could
be easily integrated into large systems of contract, such as those that are used in this audit - linch routers and limit order

https://github.com/1inch/solidity-utils/commit/166353b6d225b0ae830f9d9d76be17444c8c2178
https://github.com/OpenZeppelin/openzeppelin-contracts/security/advisories/GHSA-4h98-2769-gh6h
https://github.com/OpenZeppelin/openzeppelin-contracts/commit/d693d89d99325f395182e4f547dbf5ff8e5c3c87
https://github.com/1inch/solidity-utils/commit/6b1a3dfbe5410b37fa9d3558b606990d9fb32e43
https://github.com/1inch/solidity-utils/commit/cfdc889a5cf7ea4acd29d5b8f0dff3f63f4b6e4d
https://github.com/1inch/solidity-utils/commit/6b1a3dfbe5410b37fa9d3558b606990d9fb32e43

protocol.

However, it also utilizes .call(){value:x} method of transferring chain native assets, such as ETH. This introduces a large risk in the
form of re-entrancy attacks, so any system implementing this library would have to handle them. While 1inch’s projects in the
scope of this audit do not seem to have re-entrancy attack vectors, other projects that could be utilizing this library might. Since
this is an especially efficient and convenient library, the likelihood that some other project using this suffers and then sufferring a
re-entrancy attack is significant.

solidity-utils/contracts/libraries/UniERC20.sol:L45

(bool success,) = to.call{value: amount}("");

solidity-utils/contracts/libraries/UniERC20.sol:L62

(bool success,) = to.call{value: msg.value - amount}("");

Consider instead implementing transfer() or send() methods for transferring chain native assets, such as ETH, instead of
performing a .call()

Appendix 1 - Files in Scope

This audit covered the following files:

File
linch-contract/contracts/AggregationRouterV5.sol
linch-contract/contracts/routers/ClipperRouter.sol
linch-contract/contracts/routers/GenericRouter.sol
linch-contract/contracts/routers/UnoswapRouter.sol
linch-contract/contracts/routers/UnoswapV3Router.sol
linch-contract/contracts/interfaces/IAggregationExecutor.sol
linch-contract/contracts/interfaces/IClipperExchangelnterface.sol
linch-contract/contracts/interfaces/IUniswapV3Pool.sol
linch-contract/contracts/interfaces/IUniswapV3SwapCallback.sol
linch-contract/contracts/helpers/Errors.sol
limit-order-protocol/contracts/OrderLib.sol
limit-order-protocol/contracts/OrderMixin.sol
limit-order-protocol/contracts/OrderRFQLib.sol
limit-order-protocol/contracts/OrderRFQMixin.sol
limit-order-protocol/contracts/helpers/AmountCalculator.sol
limit-order-protocol/contracts/helpers/NonceManager.sol
limit-order-protocol/contracts/helpers/PredicateHelper.sol
limit-order-protocol/contracts/interfaces/IOrderMixin.sol

limit-order-protocol/contracts/interfaces/NotificationReceiver.sol

SHA-1 hash
24f38359ed47453a23f887a161476c881aldca24
5a5bf312439739b51ee3e85a13f9073f2df9580e
8c7b36d771ec3a90d4626af5688c0ee9ba81d848
29fd870637291dc1b1b780f218ebba479711148c¢
a50928ce7e7240b034cOb8ed65b718af5201a253
af07897cc153e2f314ff76d3fa6d56054cd5bf06
4f2c8506ff588d5f01089b8bffe70221174988fb
daf1644f03d51181fab1370d2a814b0eOed5cd25
f8691ae2136e8f0cd6968e55dbab91a484ef71fc
e4cc3321a15bba97fa05bbcfcafc30500b39a6f4
2ed82e9c40614b92eal172f0858f8a17578209a17
99a3f474b74d4594¢cc30a84d6dbfb663e3e1d1f8
ff36138f4e5858b60f09624175f54421692bacff
bd114c6abb67a6a06693fad13d7118f02b2eb819
cc02dc63e915bb01f2aececebaafee61de20e614
0fd6ae05850f817d932eaf61384727ccdcb5a8d7c
633ef15d62bd8193de3aa065bea55803254aa8e6
a4129477d3e88c7257229885d567f18659eb863e
b52b5f9690602759832e0f70eb376263b9e10c96

limit-order-protocol/contracts/libraries/ArgumentsDecoder.sol 3a9fef97be3af820e2950239b2a43dcac740622f

limit-order-protocol/contracts/libraries/Errors.sol 300b7¢c8c3ae29194260e0062635ebcbb01d0deOa

solidity-utils/contracts/EthReceiver.sol 93e2b054ef5f8839a769efOce7f5bbb15badccab

solidity-utils/contracts/OnlyWethReceiver.sol 15eb42f03496738812daa0d0eb493c790dcd582d

solidity-utils/contracts/libraries/StringUtil.sol a006835d5a8b54e5a212207e9374dddcb71f8835

solidity-utils/contracts/libraries/SafeERC20.sol da8a249eb4318ca002babb83b0Ob7aalece2da8eb

solidity-utils/contracts/libraries/UniERC20.sol af7e0c8f247c885f7bd362226d702df8f50c0a22

solidity-utils/contracts/libraries/RevertReasonForwarder.sol f92839e53f0d9e7557f4af1f7b45d71a65eba56¢

solidity-utils/contracts/libraries/ECDSA.sol 6¢c1da08ddbfcd7bca5a2¢c8694883f1899307bf72

solidity-utils/contracts/interfaces/IDailLikePermit.sol 04e8e27f31e5edelecbedc09f366828c54896928

solidity-utils/contracts/interfaces/IWETH.sol 24cd2851b4394d0d33fca955d7332c40f83ea88b

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or

representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

rowereo ov Y CONSENSYS

https://consensys.net/

