
Forta Delegated Staking

Date November 2022

Auditors
George Kobakhidze,
Tejaswa Rastogi

1 Executive Summary
This report presents the results of our engagement with the Forta Foundation to review the Forta Delegated Staking system of
contracts.

The review was conducted over 33 calendar days from Monday, October 31st, to Friday, December 2nd, by George Kobakhidze
and Tejaswa Rastogi.

The project repository is well organized, modular, and has plentiful comments that allow the reader to better understand the
intent of the contracts, not just their input and output parameters.

Off-chain logic and operational management are important pieces of this system that are out of scope for this audit. This
assessment was focused solely on the smart contracts that are listed in the Scope.

The audit started by performing a general analysis of the system and its logic. The assessment concerned the individual
contracts to be deployed, their interactions, implementation (proxy or not) details, con�iguration updates for things like access
and roles, identi�ication of trusted roles and addresses, outlining the layers of logical separation, and so on. This led the audit
team to better understand how the different pieces of the system stand on their own and connect to each other.

During the second half of the audit the above learnings and created supporting documentation, like the system diagram, were
used to hone in on the the speci�ic Forta delegated staking and rewards distribution use cases with the Scanner, Agent, and
NodeRunner registries. Function control and data �lows were identi�ied and analyzed from their beginning in the FortaStaking
contract to the individual updates to Accumulator’s rewards accumulation storage for various subject IDs.

Ultimately, this audit identi�ied issues some of which occur due to high modularity of such systems that utilize many similar
components with small, although crucial, differences. In spite of impact of some of the issues, they do not indicate �lawed core
design but do showcase the emergence of possible edge cases and operational di�iculty to keep up with the system’s
complexity as more variants of its components are introduced.

2 Scope
Our review focused on the commit hash 50a985c4ca106840f38b2dcb728e00c50ebc7b26 of the Forta Contracts repository. The list of �iles in
scope can be found in the Appendix.

2.1 Objectives

Together with the Forta Foundation team, we identi�ied the following priorities for our review:

1. Assess if the system is implemented consistently with the intended functionality, and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classi�ication Registry.

3. Review the Staking, Delegation, and Rewarding logic.

4. Assess if there are any unexpected downtime edge cases for bots and scanners.

5. The Scanner, Agent, and Node Runner registries are transferable where appropriate.

6. Architecture overview of the Forta system.

3 System Overview
The Forta Delegated Staking system is a signi�icantly sized complex net of contracts and operational tasks, and, although some
contracts could be looked at in isolation, the majority of the logic needs to be analyzed from the point of view of the whole
system.

It is important to note that this repository can be used to build generic staking for the Forta platform, and, in fact, could be
adjusted for use for other platforms as well. While there is logic speci�ic to Forta (like the agent registries and the software
update signaller) and the FORTA token, these contracts could allow for any ERC-20 token staking and delegation of staking
shares. Similarly, for example, the registries of staking subjects are separate contracts and have layers of separation from the
main staking contract itself, like the SubjectGateway contract, allowing for modular updates, changes, or even full replacement of
these registries, depending on the use case (proxy upgrades notwithstanding).

Below is a short description for each of the main contracts and a simple overall architecture diagram.

3.1 AccessManager

This contract is responsible for verifying if the users calling contracts have appropriate roles for what they want to execute,
which is done through the hasRole function and onlyRole modi�ier. Every contract that inherits BaseComponentUpgradeable calls the

1 Executive Summary

2 Scope

2.1 Objectives

3 System Overview

3.1 AccessManager

3.2 FortaStaking

3.3 StakeAllocator &
RewardsDistributor

3.4 SlashingController

3.5 StakeSubjectGateway

3.6 NodeRunnerRegistry,
AgentRegistry, ScannerRegistry

3.7
ScannerToNodeRunnerMigration

3.8 Dispatch

3.9 ScannerNodeVersion

4 Security Speci�ication

4.1 Actors

4.2 Trust Model

4.3 Additional Notes

5 Findings

5.1 didTransferShares function
has no access control modi�ier

Critical ✓ Fixed

5.2 Incorrect reward epoch start
date calculation Major ✓ Fixed

5.3 A single unfreeze dismisses all
other slashing proposal freezes

Major ✓ Fixed

5.4 Storage gap variables slightly
off from the intended size

Medium ✓ Fixed

5.5 AgentRegistryCore - Agent
Creation DoS Medium ✓ Fixed

5.6 Lack of checks for rewarding
an epoch that has already been
rewarded Medium ✓ Fixed

5.7 Reentrancy in FortaStaking
during ERC1155 mints Medium
✓ Fixed

5.8 Unnecessary code blocks that
check the same condition Minor
✓ Fixed

5.9 Event spam in
RewardsDistributor.claimRewards

Minor ✓ Fixed

5.10 SubjectTypes.sol �iles unused
Minor ✓ Fixed

5.11 Lack of a check for the
subject’s stake for
reviewSlashProposalParameters

Minor ✓ Fixed

5.12 Comment and code
inconsistencies Minor ✓ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

AUDIT S FUZZIN G SC R IBBLE ABO UT

https://github.com/forta-network/forta-contracts/tree/50a985c4ca106840f38b2dcb728e00c50ebc7b26
https://github.com/forta-network/forta-contracts
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

AccessManager contract for access control.

3.2 FortaStaking

This is the main staking contract where users and other contracts call into. It begins the actual staking process and holds the
staking token as well. Primarily, it calls into the StakeSubjectGateway contract to interact with the registries and the StakeAllocator

contract to allocate shares for the rewards.

3.3 StakeAllocator & RewardsDistributor

These two contracts contain the logic for storing and calculating the allocation of rewards based on staking shares that the
users receive. The RewardsDistributor contract is also important for the claim and distribution of staking rewards. Similarly to other
contracts, the StakeAllocator contract interacts with the StakeSubjectGateway to call into the appropriate registries.

3.4 SlashingController

This is a contract that users and administrators of the system may use to slash malicious actors and arbitrate disputes. Since the
slashing process needs a failsafe to halt malicious actors, this contract may freeze their stake, and so it also calls into the main
FortaStaking contract. Like others, it also interacts with the StakeSubjectGateway contract.

3.5 StakeSubjectGateway

One of the more important contracts in the Forta system, the StakeSubjectGateway contract is called into by the majority of the
system. Based on the arguments provided to its functions, it is able to determine what kind of subject registry needs to be called
into to receive information relevant to the system at that time. It acts as a layer between most contracts and the registries. Thus,
it calls into those subject registries directly through the IDelegatedStakeSubject and IDirectStakeSubject interfaces coupled with the
registries addresses. This contract also calls into the FortaStaking contract to determine the staking balances of users.

3.6 NodeRunnerRegistry, AgentRegistry, ScannerRegistry

These contracts are the registries that maintain the logic for the tokens crucial to the Forta system as they represent the staking
subject and their associated nodes, such as Scanners, Agents, and NodeRunner nodes after the Scanner migration. They hold
the logic to determine whether a subject is registered, operational, enabled, what kind of metadata it has, how to update that
metadata and so on. They don’t perform many external calls with the exceptions of the NodeRunnerRegistry calling the StakeAllocator

to determine allocated stake for managed subjects, and the ScannerRegistry calling the NodeRunnerRegistry for after the migration
process.

3.7 ScannerToNodeRunnerMigration

This is a contract to facilitate the migration from the ScannerRegistry to the NodeRunnerRegistry . It calls into both of the mentioned
registries as well as the main staking contract FortaStaking .

3.8 Dispatch

This contract is responsible for providing Forta system jobs and linking the Agents to the Scanners that are being run. As such,
it calls into all of the relevant subject registries - ScannerRegistry , NodeRunnerRegistry , and AgentRegistry .

3.9 ScannerNodeVersion

This contract stands slightly isolated and is used by the Forta Foundation team (or the privileged address with the appropriate
role) to signal that a new update is out for the Forta software. It does not call into any contracts, outside of its base calling into
the AccessManager like all other contracts.

4 Security Speci�ication
This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation.

4.1 Actors

The Forta Staking system has several actors that interact with each other.

The Forta Council

The team that develops, deploys, and has the OWNER role for the Forta staking system of contracts (“the Forta Council”) itself is an
important actor for the health of the system. As an owner of the smart contracts, this team also holds the power to assign and
take on at least the following roles:

DEFAULT_ADMIN_ROLE - Grants/revokes roles and performs administrative operations.

ENS_MANAGER_ROLE - Sets up the ENS reverse registration name.

UPGRADER_ROLE - Authorizes contract upgrades.

AGENT_ADMIN_ROLE - Enables/disables agents, sets stake threshold, sets frontrunning delay.

SCANNER_ADMIN_ROLE - Enables/disables agents, sets stake threshold for a chainID .

NODE_RUNNER_ADMIN_ROLE - Sets managed stake threshold for a chainID , sets registration delay.

SCANNER_2_NODE_RUNNER_MIGRATOR_ROLE - Handles migrations from scanners to node runners, deregisters scanner nodes, registers
migrated scanners/node runner nodes.

DISPATCHER_ROLE - Links/unlinks an agent to a scanner.

MIGRATION_EXECUTOR_ROLE - Migrates from the old ScannerRegistry NFTs to a single NodeRunnerRegistry NFT.

SLASHER_ROLE - Executes a slashing proposal, authorizes reverts of slashing proposals if they have already been reviewed,
slashes/freezes/unfreezes withdrawals of a subject stake.

SWEEPER_ROLE - Sweeps all the unwanted tokens.

https://consensys.net/diligence/audits/2022/11/forta-delegated-staking/forta-general-transparent.png

REWARDER_ROLE - Manages rewards for the node runner subjects.

SLASHING_ARBITER_ROLE - Dismisses/rejects/reviews a slashing proposal.

STAKING_CONTRACT_ROLE - Allocates stake on deposit for a DELEGATED subject.

STAKING_ADMIN_ROLE - Sets deposit amount for slashing proposals, sets slash percent and penalities, sets delegation params.

ALLOCATOR_CONTRACT_ROLE - Allocates/unallocates/transfers shares.

SCANNER_VERSION_ROLE - Signals scanner nodes to update their binaries with latest version.

SCANNER_BETA_VERSION_ROLE - Signals scanner nodes to update their binaries with latest beta version.

The Node/Scanner/Agent owners

Perhaps most important actors in the system are the owners of the nodes and tokens that perform and are responsible for the
security scanning activity as per the Forta con�igurations. They not only directly bring value to the system by using it, but also
collect rewards from staking and delegated staking.

Forta stakers

With introduction of delegated staking, users may delegate their stake to actors that actually interact with the system, thus
giving regular users an ability to earn yield on their tokens in return for trusting the subjects that they stake on.

4.2 Trust Model

The Forta contracts de�ine a bunch of roles that are deemed to manage various sets of operations, like slashing, sweeping,
rewards, migration, upgrades, version updates, and more. These roles, as described above, are assigned by the smart contract
owners, i.e. the Forta Council. This makes the system more centralized and also error-prone, as there will always be a risk of
private key losses or accidentally providing a role to an unintentional address.

Similarly, the responsibilities associated with these roles may be complex to manage. Functions for slashing arbitration and
rewards, for example, need to be executed with correct parameters or the system may run into issues. We recommend reducing
the reliance on centralized roles and the number of powerful roles, thus making the system more decentralized and robust.

Finally, due to the upgradeable proxy functionality of the system, there is an additional risks for incorrect deployments. For
example, as noted many times in the code comments and documentation, as the upgrades to the smart contracts add
functionality, they also add complexity to the storage layout, which may introduce storage collisions. This is currently helped by
the __gap variable within the smart contracts to have a buffer for storage slots.

It is important to note that the Forta ecosystem, including the Forta Council, Forta Foundation, and other actors, are in the
ongoing process of decentralization. This includes both standard security practices such as multi-sigs, public token-voting with
solutions like Snapshot, robust governance processes, and other forms of decentralizing the decision making processes. The
previous paragraphs intend to describe the security con�iguration and trust model associated with having admin and power
roles in the contracts. This is not a commentary on the general decentralization of power and tokens in the Forta ecosystem.

The delegated stake subjects are a source of a signi�icant trust assumptions for stakers as well. While this trust is rewarded with
yield, staking users should be aware that this yield does not come for free, and their stake may in fact be slashed if they
delegate to someone who performs a slashable action.

4.3 Additional Notes

During the audit, the Forta Foundation team independently identi�ied issues to be remediated and bene�icial changes to be
made to the Forta system. These are:

Renaming NodeRunnerRegistry to ScannerPoolRegistry .

NodeRunnerRegistry should be called ScannerPoolRegistry to avoid confusion with the intent of this registry. The associated PR can be
found here: PR#139

Registering or enabling a scanner node can take nodes in the NodeRunnerRegistry o�line.

Registering or enabling a scanner node can potentially make all of the nodes in a NodeRunnerRegistry appear as not operational.
The intended path is to stake as much as you need then register the scanners. However, a user could mess up, and that could
take out a big player. Therefore, the Forta Foundation team would feel safer if users can’t do those actions unless they have
enough staking, so a check should be added. The associated PR can be found here: PR#140

NodeRunnerRegistry.getManagedStakeThreshold() incorrect implementation.

The NodeRunnerRegistry has a function to retrieve the managed stake threshold for a speci�ic managed subject ID through
getManagedStakeThreshold() function. It does so by calling a mapping on the managed ID - _scannerStakeThresholds[managedId] . However,

the actual mapping for the stake threshold is not set on managed subject IDs. Instead, it is set on the chain ID associated with
that subject ID. To retrieve that chain ID, another mapping needs to be retrieved - _nodeRunnerChainId[managedId] . So, the correct
implementation of this would be _scannerStakeThresholds[_nodeRunnerChainId[managedId]] . The associated PR can be found here: PR#145.

Adjusting the visibility of address variables in the FortaStaking contract.

For certain off chain components to work, they need to retrieve addresses of other contracts through the main FortaStaking

contract. Speci�ically, the StakeAllocator address needs to be retrievable, so there is a change to make its visibility public.
Additionally, the RewardsDistributor contract address is not used in the FortaStaking contract, so the address variable for that is
removed altogether. The associated commits can be found here: Commit#1, Commit#2.

5 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

https://github.com/forta-network/forta-contracts/pull/139
https://github.com/forta-network/forta-contracts/pull/140
https://github.com/forta-network/forta-contracts/pull/145
https://github.com/forta-network/forta-contracts/commit/d92539b4c101f8123acb99526b3612d42bd46357
https://github.com/forta-network/forta-contracts/commit/b56502bded0ea8a0e5de82d03154841c18a8486b

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

5.1 didTransferShares function has no access control modi�ier Critical ✓ Fixed

Resolution

The concerned function has now been restricted to be only called by STAKING_CONTRACT_ROLE in a pull request 146 with �inal
commit hash as 97fbd425b64d793252f39d94b378e2655286d947

Description

The staked tokens (shares) in Forta are meant to be transferable. Similarly, the rewards allocation for these shares for delegated
staking is meant to be transferable as well. This allocation for the shares’ owner is tracked in the StakeAllocator . To enable this,
the Forta staking contract FortaStaking implements a _beforeTokenTransfer() function that calls _allocator.didTransferShares() when it is
appropriate to transfer the underlying allocation.

code/contracts/components/staking/FortaStaking.sol:L572-L585

function _beforeTokenTransfer(
 address operator,
 address from,
 address to,
 uint256[] memory ids,
 uint256[] memory amounts,
 bytes memory data
) internal virtual override {
 for (uint256 i = 0; i < ids.length; i++) {
 if (FortaStakingUtils.isActive(ids[i])) {
 uint8 subjectType = FortaStakingUtils.subjectTypeOfShares(ids[i]);
 if (subjectType == DELEGATOR_NODE_RUNNER_SUBJECT && to != address(0) && from != address(0)) {
 _allocator.didTransferShares(ids[i], subjectType, from, to, amounts[i]);
 }

Due to this, the StakeAllocator.didTransferShares() has an external visibility so it can be called from the FortaStaking contract to
perform transfers. However, there is no access control modi�ier to allow only the staking contract to call this. Therefore, anyone
can call this function with whatever parameters they want.

code/contracts/components/staking/allocation/StakeAllocator.sol:L341-L349

function didTransferShares(
 uint256 sharesId,
 uint8 subjectType,
 address from,
 address to,
 uint256 sharesAmount
) external {
 _rewardsDistributor.didTransferShares(sharesId, subjectType, from, to, sharesAmount);
}

Since the allocation isn’t represented as a token standard and is tracked directly in the StakeAllocator and RewardsDistributor , it
lacks many standard checks that would prevent abuse of the function. For example, this function does not have a check for
allowance or msg.sender==from , so any user could call didTransferShares() with to being their address and from being any address
they want to transfer allocation from, and the call would succeed.

Recommendation

Apply access control modi�iers as appropriate for this contract, for example onlyRole() .

5.2 Incorrect reward epoch start date calculation Major ✓ Fixed

Resolution

The suggested recommendations have been implemented in a pull request 144 with a �inal hash as
b23ffa370596e614c813bd3b882f3d8c6d15067e

Description

The Forta rewards system is based on epochs. A privileged address with the role REWARDER_ROLE calls the reward() function with a
parameter for a speci�ic epochNumber that consequently distributes the rewards for that epoch. Additionally, as users stake and
delegate their stake, accounts in the Forta system accrue weight that is based on the active stake to distribute these rewards.
Since accounts can modify their stake as well as delegate or un-delegate it, the rewards weight for each account can be
modi�ied, as seen, for example, in the didAllocate() function. In turn, this modi�ies the DelegatedAccRewards storage struct that stores
the accumulated rewards for each share id. To keep track of changes done to the accumulated rewards, epochs with
checkpoints are used to manage the accumulated rate of rewards, their value at the checkpoint, and the timestamp of the
checkpoint.

For example, in the didAllocate() function the addRate() function is being called to modify the accumulated rewards.

https://github.com/forta-network/forta-contracts/pull/146/files
https://github.com/forta-network/forta-contracts/pull/144/files

code/contracts/components/staking/rewards/RewardsDistributor.sol:L89-L101

function didAllocate(
 uint8 subjectType,
 uint256 subject,
 uint256 stakeAmount,
 uint256 sharesAmount,
 address staker
) external onlyRole(ALLOCATOR_CONTRACT_ROLE) {
 bool delegated = getSubjectTypeAgency(subjectType) == SubjectStakeAgency.DELEGATED;
 if (delegated) {
 uint8 delegatorType = getDelegatorSubjectType(subjectType);
 uint256 shareId = FortaStakingUtils.subjectToActive(delegatorType, subject);
 DelegatedAccRewards storage s = _rewardsAccumulators[shareId];
 s.delegated.addRate(stakeAmount);

Then the function �low goes into setRate() that checks the existing accumulated rewards storage and modi�ies it based on the
current timestamp.

code/contracts/components/staking/rewards/Accumulators.sol:L34-L36

function addRate(Accumulator storage acc, uint256 rate) internal {
 setRate(acc, latest(acc).rate + rate);
}

code/contracts/components/staking/rewards/Accumulators.sol:L42-L50

Namely, it pushes epoch checkpoints to the list of account checkpoints based on its timestamp. If the last checkpoint’s
timestamp is during the current epoch, then the last checkpoint is replaced with the new one altogether. If the last checkpoint’s
timestamp is different from the current epoch, a new checkpoint is added to the list. However, the isCurrentEpoch() function calls a
function getCurrentEpochTimestamp() that incorrectly determines the start date of the current epoch. In particular, it doesn’t take the
offset into account when calculating how many epochs have already passed.

code/contracts/components/staking/rewards/Accumulators.sol:L103-L110

function getCurrentEpochTimestamp() internal view returns (uint256) {
 return ((block.timestamp / EPOCH_LENGTH) * EPOCH_LENGTH) + TIMESTAMP_OFFSET;
}

function isCurrentEpoch(uint256 timestamp) internal view returns (bool) {
 uint256 currentEpochStart = getCurrentEpochTimestamp();
 return timestamp > currentEpochStart;
}

Instead of ((block.timestamp / EPOCH_LENGTH) * EPOCH_LENGTH) + TIMESTAMP_OFFSET , it should be
(((block.timestamp - TIMESTAMP_OFFSET) / EPOCH_LENGTH) * EPOCH_LENGTH) + TIMESTAMP_OFFSET . In fact, it should simply call the getEpochNumber()

function that correctly provides the epoch number for any timestamp.

code/contracts/components/staking/rewards/Accumulators.sol:L95-L97

function getEpochNumber(uint256 timestamp) internal pure returns (uint32) {
 return SafeCast.toUint32((timestamp - TIMESTAMP_OFFSET) / EPOCH_LENGTH);
}

In other words, the resulting function would look something like the following:

 function getCurrentEpochTimestamp() public view returns (uint256) {
 return (getEpochNumber(block.timestamp) * EPOCH_LENGTH) + TIMESTAMP_OFFSET;
 }

Otherwise, if block.timestamp is such that (block.timestamp - TIMESTAMP_OFFSET) / EPOCH_LENGTH = n and block.timestamp / EPOCH_LENGTH = n+1 ,
which would happen on roughly 4 out of 7 days of the week since EPOCH_LENGTH = 1 weeks and TIMESTAMP_OFFSET = 4 days , this would
cause the getCurrentEpochTimestamp() function to return the end timestamp of the epoch (which is in the future) instead of the start.
Therefore, if a checkpoint with such a timestamp is committed to the account’s accumulated rewards checkpoints list, it will
always fail the below check in the epoch it got submitted, and any checkpoint committed afterwards but during the same epoch
with a similar type of block.timestamp (i.e. satisfying the condition at the beginning of this paragraph), would be pushed to the top
of the list instead of replacing the previous checkpoint.

code/contracts/components/staking/rewards/Accumulators.sol:L45-L48

if (length > 0 && isCurrentEpoch(acc.checkpoints[length - 1].timestamp)) {
 acc.checkpoints[length - 1] = ckpt;
} else {
 acc.checkpoints.push(ckpt);

This causes several checkpoints to be stored for the same epoch, which would cause issues in functions such as getAtEpoch() ,
that feeds into getValueAtEpoch() function that provides data for the rewards’ share calculation. In the end, this would cause issues

function setRate(Accumulator storage acc, uint256 rate) internal {
 EpochCheckpoint memory ckpt = EpochCheckpoint({ timestamp: SafeCast.toUint32(block.timestamp), rate: SafeCast.toUint224(rate), val
 uint256 length = acc.checkpoints.length;
 if (length > 0 && isCurrentEpoch(acc.checkpoints[length - 1].timestamp)) {
 acc.checkpoints[length - 1] = ckpt;
 } else {
 acc.checkpoints.push(ckpt);
 }
}

in the accounting for the rewards calculation resulting in incorrect distributions.

During the discussion with the Forta Foundation team, it was additionally discovered that there are edge cases around the limits
of epochs. Speci�ically, epoch’s end time and the subsequent epoch’s start time are exactly the same, although it should be that
it is only the start of the next epoch. Similarly, that start time isn’t recognized as part of the epoch due to > sign instead of >= .
In particular, the following changes need to be made:

 function getEpochEndTimestamp(uint256 epochNumber) public pure returns (uint256) {
 return ((epochNumber + 1) * EPOCH_LENGTH) + TIMESTAMP_OFFSET - 1; <---- so it is 23:59:59 instead of next day 00:00:00
 }

 function isCurrentEpoch(uint256 timestamp) public view returns (bool) {
 uint256 currentEpochStart = getCurrentEpochTimestamp();
 return timestamp >= currentEpochStart; <--- for the first second on Monday
 }

Recommendation

A refactor of the epoch timestamp calculation functions is recommended to account for:

The correct epoch number to calculate the start and end timestamps of epochs.

The boundaries of epochs coinciding.

Clarity in functions’ intent. For example, adding a function just to calculate any epoch’s start time and renaming
getCurrentEpochTimestamp() to getCurrentEpochStartTimestamp() .

5.3 A single unfreeze dismisses all other slashing proposal freezes Major ✓ Fixed

Resolution

As per the recommendation, the Forta team modi�ied the logic in favor of open proposals. Now, every shareId will have a
counter for open proposals, which will be incremented every time a new proposal is launched and will be unfrozen only if
the counter is zero. The changes were implemented in a pull request 149 with a �inal hash
76338b1417bdb7b1da49b7e74ad011b307907f7f

Description

In order to retaliate against malicious actors, the Forta staking system allows users to submit slashing proposals that are
guarded by submitting along a deposit with a slashing reason. These proposals immediately freeze the proposal’s subject’s
stake, blocking them from withdrawing that stake.

At the same time, there can be multiple proposals submitted against the same subject, which works out with freezing – the
subject remains frozen with each proposal submitted. However, once any one of the active proposals against the subject gets to
the end of its lifecycle, be it REJECTED , DISMISSED , EXECUTED , or REVERTED , the subject gets unfrozen altogether. The other proposals
might still be active, but the stake is no longer frozen, allowing the subject to withdraw it if they would like.

In terms of impact, this allows bad actors to avoid punishment intended by the slashes and freezes. A malicious actor could, for
example, submit a faulty proposal against themselves in the hopes that it will get quickly rejected or dismissed while the
existing, legitimate proposals against them are still being considered. This would allow them to get unfrozen quickly and
withdraw their stake. Similarly, in the event a bad staker has several proposals against them, they could withdraw right after a
single slashing proposal goes through.

Examples

code/contracts/components/staking/slashing/SlashingController.sol:L174-L179

function dismissSlashProposal(uint256 _proposalId, string[] calldata _evidence) external onlyRole(SLASHING_ARBITER_ROLE) {
 _transition(_proposalId, DISMISSED);
 _submitEvidence(_proposalId, DISMISSED, _evidence);
 _returnDeposit(_proposalId);
 _unfreeze(_proposalId);
}

code/contracts/components/staking/slashing/SlashingController.sol:L187-L192

function rejectSlashProposal(uint256 _proposalId, string[] calldata _evidence) external onlyRole(SLASHING_ARBITER_ROLE) {
 _transition(_proposalId, REJECTED);
 _submitEvidence(_proposalId, REJECTED, _evidence);
 _slashDeposit(_proposalId);
 _unfreeze(_proposalId);
}

code/contracts/components/staking/slashing/SlashingController.sol:L215-L229

https://github.com/forta-network/forta-contracts/pull/149/files

code/contracts/components/staking/slashing/SlashingController.sol:L254-L259

function revertSlashProposal(uint256 _proposalId, string[] calldata _evidence) external {
 _authorizeRevertSlashProposal(_proposalId);
 _transition(_proposalId, REVERTED);
 _submitEvidence(_proposalId, REVERTED, _evidence);
 _unfreeze(_proposalId);
}

code/contracts/components/staking/slashing/SlashingController.sol:L267-L272

code/contracts/components/staking/slashing/SlashingController.sol:L337-L339

function _unfreeze(uint256 _proposalId) private {
 slashingExecutor.freeze(proposals[_proposalId].subjectType, proposals[_proposalId].subjectId, false);
}

Recommendation

Introduce a check in the unfreezing mechanics to �irst ensure there are no other active proposals for that subject.

5.4 Storage gap variables slightly off from the intended size Medium ✓ Fixed

Resolution

The Forta Team worked on the storage layout to maintain a consistent storage buffer in the inheritance tree. The changes
were made through multiple pull requests, also an easy-to-understand layout description has been added through a pull
request 157. However, we still found some inconsistencies and recommend doing a thorough review of the buffer space
again.

For instance, in FortaStaking (considering the latest commit)

 uint64 private _withdrawalDelay;

 // treasury for slashing
 address private _treasury;

the above-mentioned storage variables will be taking a single slot, however, separate slots are considered for the buffer
space(referring to the storage layout description to determine __gap buffer).

Description

The Forta staking system is using upgradeable proxies for its deployment strategy. To avoid storage collisions between contract
versions during upgrades, uint256[] private __gap array variables are introduced that create a storage buffer. Together with
contract state variables, the storage slots should sum up to 50. For example, the __gap variable is present in the
BaseComponentUpgradeable component, which is the base of most Forta contracts, and there is a helpful comment in AgentRegistryCore

that describes how its relevant __gap variable size was calculated:

code/contracts/components/BaseComponentUpgradeable.sol:L62

uint256[50] private __gap;

code/contracts/components/agents/AgentRegistryCore.sol:L196

uint256[41] private __gap; // 50 - 1 (frontRunningDelay) - 3 (_stakeThreshold) - 5 StakeSubjectUpgradeable

However, there are a few places where the __gap size was not computed correctly to get the storage slots up to 50. Some of
these are:

function reviewSlashProposalParameters(
 uint256 _proposalId,
 uint8 _subjectType,
 uint256 _subjectId,
 bytes32 _penaltyId,
 string[] calldata _evidence
) external onlyRole(SLASHING_ARBITER_ROLE) onlyInState(_proposalId, IN_REVIEW) onlyValidSlashPenaltyId(_penaltyId) onlyValidSubjectType
 // No need to check for proposal existence, onlyInState will revert if _proposalId is in undefined state
 if (!subjectGateway.isRegistered(_subjectType, _subjectId)) revert NonRegisteredSubject(_subjectType, _subjectId);

 _submitEvidence(_proposalId, IN_REVIEW, _evidence);
 if (_subjectType != proposals[_proposalId].subjectType || _subjectId != proposals[_proposalId].subjectId) {
 _unfreeze(_proposalId);
 _freeze(_subjectType, _subjectId);
 }

function executeSlashProposal(uint256 _proposalId) external onlyRole(SLASHER_ROLE) {
 _transition(_proposalId, EXECUTED);
 Proposal memory proposal = proposals[_proposalId];
 slashingExecutor.slash(proposal.subjectType, proposal.subjectId, getSlashedStakeValue(_proposalId), proposal.proposer, slashPercent
 slashingExecutor.freeze(proposal.subjectType, proposal.subjectId, false);
}

https://github.com/forta-network/forta-contracts/pull/157/files
https://github.com/forta-network/forta-contracts/blob/518b76846df2e4e7342245568c9e456073b255a6/contracts/components/staking/FortaStaking.sol

code/contracts/components/scanners/ScannerRegistry.sol:L234

uint256[49] private __gap;

code/contracts/components/dispatch/Dispatch.sol:L333

uint256[47] private __gap;

code/contracts/components/node_runners/NodeRunnerRegistryCore.sol:L452

uint256[44] private __gap;

While these still provide large storage buffers, it is best if the __gap variables are calculated to hold the same buffer within
contracts of similar types as per the initial intentions to avoid confusion.

During conversations with the Forta Foundation team, it appears that some contracts like ScannerRegistry and AgentRegistry should
instead add up to 45 with their __gap variable due to the StakeSubject contracts they inherit from adding 5 from themselves. This
is something to note and be careful with as well for future upgrades.

Recommendation

Provide appropriate sizes for the __gap variables to have a consistent storage layout approach that would help avoid storage
issues with future versions of the system.

5.5 AgentRegistryCore - Agent Creation DoS Medium ✓ Fixed

Resolution

The Forta team as per the recommendations modi�ied the minting logic to allow users to mint an agentId only for their own
address in a pull request 155 with �inal hash as 7426891222e2bcdf2bbbec669905d5041f9fb58e . Also, the team claims that the Agent Ids
are generated through the Forta Bot SDK to minimize the collision risk. However, this has not been veri�ied by the auditing
team.

We still recommend notifying users to check whether an ID is already registered prior to making any commitment if a front-
running delay is enabled, to avoid unintended DoS.

Description

AgentRegistryCore allows anyone to mint an agentID for the desired owner address. However, in some cases, it may fall prey to
DoS, either deliberately or unintentionally.

For instance, let’s assume the Front Running Protection is disabled or the frontRunningDelay is 0. It means anyone can directly
create an agent without any prior commitment. Thus, anyone can observe pending transactions and try to front run them to
mint an agentID prior to the victim’s restricting it to mint a desired agentID .

Also, it may be possible that a malicious actor succeeds in frontrunning a transaction with manipulated data/chainIDs but with
the same owner address and agentID . There is a good chance that victim still accepts the attacker’s transaction as valid, even
though its own transaction reverted, due to the fact that the victim is still seeing itself as the owner of that ID.

Taking an instance where let’s assume the frontrunning protection is enabled. Still, there is a good chance that two users vouch
for the same agentIDs and commits in the same block, thus getting the same frontrunning delay. Then, it will be a game of luck,
whoever creates that agent �irst will get the ID minted to its address, and the other user’s transaction will be reverted wasting the
time they have spent on the delay.

As the agentIDs can be picked by users, the chances of collisions with an already minted ID will increase over time causing
unnecessary reverts for others.

Adding to the fact that there is no restriction for owner address, anyone can spam mint any agentID to any address for any
pro�itable reason.

Examples

code/contracts/components/agents/AgentRegistryCore.sol:L68-L77

function createAgent(uint256 agentId, address owner, string calldata metadata, uint256[] calldata chainIds)
public
 onlySorted(chainIds)
 frontrunProtected(keccak256(abi.encodePacked(agentId, owner, metadata, chainIds)), frontRunningDelay)
{
 _mint(owner, agentId);
 _beforeAgentUpdate(agentId, metadata, chainIds);
 _agentUpdate(agentId, metadata, chainIds);
 _afterAgentUpdate(agentId, metadata, chainIds);
}

Recommendation

1. Modify function prepareAgent to not commit an already registered agentID .

2. A better approach could be to allow sequential minting of agentIDs using some counters.

3. Only allow users to mint an agentID , either for themselves or for someone they are approved to.

https://github.com/forta-network/forta-contracts/pull/155/files

5.6 Lack of checks for rewarding an epoch that has already been rewarded Medium ✓ Fixed

Resolution

The suggested recommendations have been implemented in a pull request 150 with �inal hash
76e1ae8ca16c92851f2bafb905f0e0c86542027c . The reward logic has been modi�ied to register the reward for an epoch only once and

revert if called twice.

Description

To give rewards to the participating stakers, the Forta system utilizes reward epochs for each shareId , i.e. a delegated staking
share. Each epoch gets their own reward distribution, and then StakeAllocator and RewardsDistributor contracts along with the Forta
staking shares determine how much the users get.

To actually allocate these rewards, a privileged account with the role REWARDER_ROLE calls the RewardsDistributor.reward() function with
appropriate parameters to store the amount a shareId gets for that speci�ic epochNumber , and then adds the amount to the
totalRewardsDistributed contract variable for tracking. However, there is no check that the shareId already received rewards for that
epoch . The new reward amount simply replaces the old reward amount, and totalRewardsDistributed gets the new amount added to it

anyway. This causes inconsistencies with accounting in the totalRewardsDistributed variable.

Although totalRewardsDistributed is essentially isolated to the sweep() function to allow transferring out the reward tokens without
taking away those tokens reserved for the reward distribution, this still creates an inconsistency, albeit a minor one in the
context of the current system.

Similarly, the sweep() function deducts the totalRewardsDistributed amount instead of the amount of pending rewards only. In other
words, either there should be a different variable that tracks only pending rewards, or the totalRewardsDistributed should have
token amounts deducted from it when users execute the claimRewards() function. Otherwise, after a few epochs there will be a
really large totalRewardsDistributed amount that might not re�lect the real amount of pending reward tokens left on the contract,
and the sweep() function for the reward token is likely to fail for any amount being transferred out.

Examples

code/contracts/components/staking/rewards/RewardsDistributor.sol:L155-L167

function reward(
 uint8 subjectType,
 uint256 subjectId,
 uint256 amount,
 uint256 epochNumber
) external onlyRole(REWARDER_ROLE) {
 if (subjectType != NODE_RUNNER_SUBJECT) revert InvalidSubjectType(subjectType);
 if (!_subjectGateway.isRegistered(subjectType, subjectId)) revert RewardingNonRegisteredSubject(subjectType, subjectId);
 uint256 shareId = FortaStakingUtils.subjectToActive(getDelegatorSubjectType(subjectType), subjectId);
 _rewardsPerEpoch[shareId][epochNumber] = amount;
 totalRewardsDistributed += amount;
 emit Rewarded(subjectType, subjectId, amount, epochNumber);
}

Recommendation

Implement checks as appropriate to the reward() function to ensure correct behavior of totalRewardsDistributed tracking. Also,
implement necessary changes to the tracking of pending rewards, if necessary.

5.7 Reentrancy in FortaStaking during ERC1155 mints Medium ✓ Fixed

Resolution

The Forta team implemented a Reentrancy Guard in a pull request 151 with a �inal hash 62080c17e9bd2be8105bfe4e59f36fad7be60fe5

Description

In the Forta staking system, the staking shares (both “active” and “inactive”) are represented as tokens implemented according
to the ERC1155 standard. The speci�ic implementation that is being used utilizes a smart contract acceptance check
_doSafeTransferAcceptanceCheck() upon mints to the recipient.

code/contracts/components/staking/FortaStaking.sol:L54

The speci�ic implementation for ERC1155SupplyUpgradeable contracts can be found here, and the smart contract check can be found
here.

This opens up reentrancy into the system’s �low. In fact, the reentrancy occurs on all mints that happen in the below functions,
and it happens before a call to another Forta contract for allocation is made via either _allocator.depositAllocation or
_allocator.withdrawAllocation :

code/contracts/components/staking/FortaStaking.sol:L273-L295

contract FortaStaking is BaseComponentUpgradeable, ERC1155SupplyUpgradeable, SubjectTypeValidator, ISlashingExecutor, IStakeMigrator {

https://github.com/forta-network/forta-contracts/pull/150/files
https://github.com/forta-network/forta-contracts/pull/151/files
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/token/ERC1155/extensions/ERC1155SupplyUpgradeable.sol
https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/25aabd286e002a1526c345c8db259d57bdf0ad28/contracts/token/ERC1155/ERC1155Upgradeable.sol#L271-L291

function deposit(
 uint8 subjectType,
 uint256 subject,
 uint256 stakeValue
) external onlyValidSubjectType(subjectType) notAgencyType(subjectType, SubjectStakeAgency.MANAGED) returns (uint256) {
 if (address(subjectGateway) == address(0)) revert ZeroAddress("subjectGateway");
 if (!subjectGateway.isStakeActivatedFor(subjectType, subject)) revert StakeInactiveOrSubjectNotFound();
 address staker = _msgSender();
 uint256 activeSharesId = FortaStakingUtils.subjectToActive(subjectType, subject);
 bool reachedMax;
 (stakeValue, reachedMax) = _getInboundStake(subjectType, subject, stakeValue);
 if (reachedMax) {
 emit MaxStakeReached(subjectType, subject);
 }
 uint256 sharesValue = stakeToActiveShares(activeSharesId, stakeValue);
 SafeERC20.safeTransferFrom(stakedToken, staker, address(this), stakeValue);

 _activeStake.mint(activeSharesId, stakeValue);
 _mint(staker, activeSharesId, sharesValue, new bytes(0));
 emit StakeDeposited(subjectType, subject, staker, stakeValue);
 _allocator.depositAllocation(activeSharesId, subjectType, subject, staker, stakeValue, sharesValue);
 return sharesValue;
}

code/contracts/components/staking/FortaStaking.sol:L303-L326

function migrate(
 uint8 oldSubjectType,
 uint256 oldSubject,
 uint8 newSubjectType,
 uint256 newSubject,
 address staker
) external onlyRole(SCANNER_2_NODE_RUNNER_MIGRATOR_ROLE) {
 if (oldSubjectType != SCANNER_SUBJECT) revert InvalidSubjectType(oldSubjectType);
 if (newSubjectType != NODE_RUNNER_SUBJECT) revert InvalidSubjectType(newSubjectType);
 if (isFrozen(oldSubjectType, oldSubject)) revert FrozenSubject();

 uint256 oldSharesId = FortaStakingUtils.subjectToActive(oldSubjectType, oldSubject);
 uint256 oldShares = balanceOf(staker, oldSharesId);
 uint256 stake = activeSharesToStake(oldSharesId, oldShares);
 uint256 newSharesId = FortaStakingUtils.subjectToActive(newSubjectType, newSubject);
 uint256 newShares = stakeToActiveShares(newSharesId, stake);

 _activeStake.burn(oldSharesId, stake);
 _activeStake.mint(newSharesId, stake);
 _burn(staker, oldSharesId, oldShares);
 _mint(staker, newSharesId, newShares, new bytes(0));
 emit StakeDeposited(newSubjectType, newSubject, staker, stake);
 _allocator.depositAllocation(newSharesId, newSubjectType, newSubject, staker, stake, newShares);
}

code/contracts/components/staking/FortaStaking.sol:L365-L387

function initiateWithdrawal(
 uint8 subjectType,
 uint256 subject,
 uint256 sharesValue
) external onlyValidSubjectType(subjectType) returns (uint64) {
 address staker = _msgSender();
 uint256 activeSharesId = FortaStakingUtils.subjectToActive(subjectType, subject);
 if (balanceOf(staker, activeSharesId) == 0) revert NoActiveShares();
 uint64 deadline = SafeCast.toUint64(block.timestamp) + _withdrawalDelay;

 _lockingDelay[activeSharesId][staker].setDeadline(deadline);

 uint256 activeShares = Math.min(sharesValue, balanceOf(staker, activeSharesId));
 uint256 stakeValue = activeSharesToStake(activeSharesId, activeShares);
 uint256 inactiveShares = stakeToInactiveShares(FortaStakingUtils.activeToInactive(activeSharesId), stakeValue);
 SubjectStakeAgency agency = getSubjectTypeAgency(subjectType);
 _activeStake.burn(activeSharesId, stakeValue);
 _inactiveStake.mint(FortaStakingUtils.activeToInactive(activeSharesId), stakeValue);
 _burn(staker, activeSharesId, activeShares);
 _mint(staker, FortaStakingUtils.activeToInactive(activeSharesId), inactiveShares, new bytes(0));
 if (agency == SubjectStakeAgency.DELEGATED || agency == SubjectStakeAgency.DELEGATOR) {
 _allocator.withdrawAllocation(activeSharesId, subjectType, subject, staker, stakeValue, activeShares);
 }

Although this doesn’t seem to be an issue in the current Forta system of contracts since the allocator’s logic doesn’t seem to be
manipulable, this could still be dangerous as it opens up an external execution �low.

Recommendation

Consider introducing a reentrancy check or emphasize this behavior in the documentation, so that both other projects using
this system later and future upgrades along with maintenance work on the Forta staking system itself are implemented safely.

5.8 Unnecessary code blocks that check the same condition Minor ✓ Fixed

Resolution

The code block has been refactored under a single conditional block as per the suggested recommendation in a pull
request 152 with a �inal hash as 0031cbdeb9450b86c49dd2c284efbe7af0eac542

https://github.com/forta-network/forta-contracts/pull/152/files

Description

In the RewardsDistributor there is a function that allows to set delegation fees for a NodeRunner . It adjusts the fees[] array for that
node as appropriate. However, during its checks, it performs the same check twice in a row.

Examples

code/contracts/components/staking/rewards/RewardsDistributor.sol:L259-L264

if (fees[1].sinceEpoch != 0) {
 if (Accumulators.getCurrentEpochNumber() < fees[1].sinceEpoch + delegationParamsEpochDelay) revert SetDelegationFeeNotReady();
}
if (fees[1].sinceEpoch != 0) {
 fees[0] = fees[1];
}

Recommendation

Consider refactoring this under a single code block.

5.9 Event spam in RewardsDistributor.claimRewards Minor ✓ Fixed

Resolution

Forta team has implemented the recommended check in a pull request 153, as:
if (epochRewards == 0) revert ZeroAmount("epochRewards");

The implemented check will now be reverting the transaction if there exists no reward for an epoch number. However, it
may not be a gas-e�icient approach for the user claiming rewards and accidentally passing an incorrect epoch number. A
better approach could be to transfer any reward and emit any event only for a non-zero epochReward.

Description

The RewardsDistributor contract allows users to claim their rewards through the claimRewards() function. It does check to see
whether or not the user has already claimed the rewards for a speci�ic epoch that they are claiming for, but it does not check to
see if the user has any associated rewards at all. This could lead to event ClaimedRewards being spammed by malicious users,
especially on low gas chains.

Examples

code/contracts/components/staking/rewards/RewardsDistributor.sol:L224-L229

for (uint256 i = 0; i < epochNumbers.length; i++) {
 if (_claimedRewardsPerEpoch[shareId][epochNumbers[i]][_msgSender()]) revert AlreadyClaimed();
 _claimedRewardsPerEpoch[shareId][epochNumbers[i]][_msgSender()] = true;
 uint256 epochRewards = _availableReward(shareId, isDelegator, epochNumbers[i], _msgSender());
 SafeERC20.safeTransfer(rewardsToken, _msgSender(), epochRewards);
 emit ClaimedRewards(subjectType, subjectId, _msgSender(), epochNumbers[i], epochRewards);

Recommendation

Add a check for rewards amounts being greater than 0.

5.10 SubjectTypes.sol �iles unused Minor ✓ Fixed

Resolution

The unused �ile has now been removed in commit 2548e0a4f7b38926362a759f4fa0611394348d6e

Description

There is a rogue �ile SubjectTypes.sol that is not being utilized. It appears that its intended functionality is being done by the
SubjectTypeValidator.sol �ile as it even has a contract with the same name implemented there.

Examples

code/contracts/components/staking/SubjectTypes.sol:L4-L10

pragma solidity ^0.8.9;

uint8 constant SCANNER_SUBJECT = 0;
uint8 constant AGENT_SUBJECT = 1;
uint8 constant NODE_RUNNER_SUBJECT = 3;

contract SubjectTypeValidator {

Recommendation

Remove the SubjectTypes.sol �ile.

5.11 Lack of a check for the subject’s stake for reviewSlashProposalParameters Minor ✓ Fixed

https://github.com/forta-network/forta-contracts/pull/153/files
https://github.com/forta-network/forta-contracts/commit/2548e0a4f7b38926362a759f4fa0611394348d6e

Resolution

The recommended check has now been added in a pull request 154 with �inal hash as 17a75b2d67cfa7b5662d9f7b4e3cab8cb9c7907e

Description

In the SlashingController contract, the address with the SLASHING_ARBITER_ROLE may call the reviewSlashProposalParameters() function to
adjust the slashing proposal to a new _subjectId and _subjectType . However, unlike in the proposeSlash() function, there is no check
for that subject having any stake at all.

While it may be assumed that the review function will be called by a privileged and knowledgeable actor, this additional check
may avoid accidental mistakes.

Examples

code/contracts/components/staking/slashing/SlashingController.sol:L153

if (subjectGateway.totalStakeFor(_subjectType, _subjectId) == 0) revert ZeroAmount("subject stake");

code/contracts/components/staking/slashing/SlashingController.sol:L226-L229

if (_subjectType != proposals[_proposalId].subjectType || _subjectId != proposals[_proposalId].subjectId) {
 _unfreeze(_proposalId);
 _freeze(_subjectType, _subjectId);
}

Recommendation

Add a check for the new subject having stake to slash.

5.12 Comment and code inconsistencies Minor ✓ Fixed

Resolution

The comments have now been found �ixed as per the implemented logic, primarily in the pull request 156 and in another
commit with hash f4ee799ee192084965643b09b69f3cbeababd5ae

Description

During the audit a few inconsistencies were found between what the comments say and what the implemented code actually
did.

Examples

Subject Type Agency for Scanner Subjects

In the SubjectTypeValidator , the comment says that the SCANNER_SUBJECT is of type DIRECT agency type, i.e. it can be directly staked on
by multiple different stakers. However, we found a difference in the implementation, where the concerned subject is de�ined as
type MANAGED agency type, which says that it cannot be staked on directly; instead it’s a delegated type and the allocation is
supposed to be managed by its manager.

code/contracts/components/staking/SubjectTypeValidator.sol:L21

* - SCANNER_SUBJECT --> DIRECT

code/contracts/components/staking/SubjectTypeValidator.sol:L66-L67

} else if (subjectType == SCANNER_SUBJECT) {
 return SubjectStakeAgency.MANAGED;

Dispatch refers to ERC721 tokens as ERC1155

One of the comments describing the functionality to link and unlink agents and scanners refers to them as ERC1155 tokens,
when in reality they are ERC721.

code/contracts/components/dispatch/Dispatch.sol:L179-L185

/**
 * @notice Assigns the job of running an agent to a scanner.
 * @dev currently only allowed for DISPATCHER_ROLE (Assigner software).
 * @dev emits Link(agentId, scannerId, true) event.
 * @param agentId ERC1155 token id of the agent.
 * @param scannerId ERC1155 token id of the scanner.
 */

NodeRunnerRegistryCore comment that implies the reverse of what happens

A comment describing a helper function that returns address for a given scanner ID describes the opposite behavior. It is the
same comment for the function just above that actually does what the comment says.

code/contracts/components/node_runners/NodeRunnerRegistryCore.sol:L259-L262

https://github.com/forta-network/forta-contracts/pull/154/files
https://github.com/forta-network/forta-contracts/pull/156/files
https://github.com/forta-network/forta-contracts/commit/f4ee799ee192084965643b09b69f3cbeababd5ae

/// Converts scanner address to uint256 for FortaStaking Token Id.
function scannerIdToAddress(uint256 scannerId) public pure returns (address) {
 return address(uint160(scannerId));
}

ScannerToNodeRunnerMigration comment that says that no NodeRunner tokens must be owned

For the migration from Scanners to NodeRunners, a comment in the beginning of the �ile implies that for the system to work
correctly, there must be no NodeRunner tokens owned prior to migration. After a conversation with the Forta Foundation team, it
appears that this was an early design choice that is no longer relevant.

code/contracts/components/scanners/ScannerToNodeRunnerMigration.sol:L69

* @param nodeRunnerId If set as 0, a new NodeRunnerRegistry ERC721 will be minted to nodeRunner (but it must not own any prior),

code/contracts/components/scanners/ScannerToNodeRunnerMigration.sol:L91

* @param nodeRunnerId If set as 0, a new NodeRunnerRegistry ERC721 will be minted to nodeRunner (but it must not own any prior),

Recommendation

Verify the operational logic and �ix either the concerned comments or de�ined logic as per the need.

Appendix 1 - Files in Scope
This audit covered the following �iles:

File SHA-1 hash

code/contracts/components/BaseComponentUpgradeable.sol 13680a70a63eb9d5c934c20b734a3d88b5672834

code/contracts/components/Roles.sol 0653e7dc8e3cb38d3b4f6d71f96da22a14a88776

code/contracts/components/access/AccessManager.sol 25615dd10406d5d4b29acd6382d35c9d1181a80f

code/contracts/components/agents/AgentRegistry.sol cf64e86bc416c8922c2080f25d6230ac001f1315

code/contracts/components/agents/AgentRegistryCore.sol d2f2b6cf51be66f4ba6f51fac15078c93d7c2775

code/contracts/components/agents/AgentRegistryEnable.sol 4613c92ae05d7967c6e57d8c72169725641c5549

code/contracts/components/agents/AgentRegistryEnumerable.sol ddaa1eb3af25b88cb8b37a6ff7dd8846bb6350c6

code/contracts/components/agents/AgentRegistryMetadata.sol 6bd9965f3c5a5535ca1cb03638787cb704ede475

code/contracts/components/dispatch/Dispatch.sol 61823c3266bb7dce491016c15dfc815db01dd7b8

code/contracts/components/node_runners/NodeRunnerRegistry.sol 048ea91cd2a92da58dce8c17af7ac300a34b887e

code/contracts/components/node_runners/NodeRunnerRegistryCore.sol fce62dc14d1c4c583da7f0e7a23b104d7793cb05

code/contracts/components/node_runners/NodeRunnerRegistryManaged.sol 5213b3f671831e1fadb42f2746b84e263966a0a4

code/contracts/components/scanners/ScannerNodeVersion.sol 78c54880c1a79f56238e452df695aa91471b9464

code/contracts/components/scanners/ScannerRegistry.sol 0ee261ce7fd5e3d70cc4f7a41d08aa012d57d0cf

code/contracts/components/scanners/ScannerRegistryCore.sol b2b698264aa931747a2f4cebc584283c357c6cb4

code/contracts/components/scanners/ScannerRegistryEnable.sol c60bad089815a8c46c1339a41550f6962ed82abe

code/contracts/components/scanners/ScannerRegistryManaged.sol f4d4a85e41225de2b2099691b064bc4155acf7b6

code/contracts/components/scanners/ScannerRegistryMetadata.sol d30a793132d6efc5d6d07bf21746fc375c3ca093

code/contracts/components/scanners/ScannerToNodeRunnerMigration.sol de4fe62381307782b141f20d865e1c8cbf95bfd7

code/contracts/components/staking/FortaStaking.sol 476ce510d8777040a72be5c31ae65bfca566520b

code/contracts/components/staking/FortaStakingUtils.sol 29291cf1d741b5e95ac743e6da345e881e66e0d8

code/contracts/components/staking/IStakeMigrator.sol 1a2660dc3e30738c3f3b9a0e25ef83367b64e3b2

code/contracts/components/staking/SubjectTypeValidator.sol 00e678d3760ae1f87dff0a0f9d7d98563c2cea2e

code/contracts/components/staking/SubjectTypes.sol 64298bd5a3020e68c9cafa48235a2cd31ef3b6c6

code/contracts/components/staking/allocation/IStakeAllocator.sol f35a3552ba58626631c8a49520f9f33cbed5ba36

code/contracts/components/staking/allocation/StakeAllocator.sol c5290cd0c4d0e1fef8b975ecf76174fc713178b0

code/contracts/components/staking/rewards/Accumulators.sol e7374d3556511447cdf1b00c1a753b3583ed8bf0

code/contracts/components/staking/rewards/IRewardReceiver.sol 8f99f8997f1f5277ef9f2ee2f61ae32d0be86b75

code/contracts/components/staking/rewards/IRewardsDistributor.sol 06c8789a9b0b9aea7e89728088f690da11515054

code/contracts/components/staking/rewards/RewardsDistributor.sol 26e217ce89290e93241b471825a17926335d0718

code/contracts/components/staking/slashing/ISlashingExecutor.sol 3e5be697de5ae84e17337e0270708a4f4d122c84

code/contracts/components/staking/slashing/SlashReasons.sol 7ea601dc64a46db02d7d25b0f2e349a542004eb3

code/contracts/components/staking/slashing/SlashingController.sol aded81ebc24be0fdb1a4f351b7dbf0941b6d005d

code/contracts/components/staking/stake_subjects/DelegatedStakeSubject.sol 928c4b72f7c4ea5f57aad163179b4b2e1b421a44

File SHA-1 hash

code/contracts/components/staking/stake_subjects/DirectStakeSubject.sol 45eb4e187547fcdc46634640fdbe54b164937d51

code/contracts/components/staking/stake_subjects/IDelegatedStakeSubject.sol a1d9e6e796b84097fd87ab090336403b5b111f95

code/contracts/components/staking/stake_subjects/IDirectStakeSubject.sol 49cdf505f1b3b3ae227817bdebfc159cadbbb6a9

code/contracts/components/staking/stake_subjects/IStakeSubject.sol 331078471f24112cecca1dd5f1162fd84e9a35af

code/contracts/components/staking/stake_subjects/IStakeSubjectGateway.sol 8a65138fb2bb43a6578e4c7e94346ee96f5bb7ce

code/contracts/components/staking/stake_subjects/StakeSubjectGateway.sol 3e2a8b594d527005618f65b654acd3b2625708e4

code/contracts/components/utils/AccessManaged.sol c3e6e3d0994f575d1566bccc6812dc3c8d89b223

code/contracts/components/utils/ForwardedContext.sol 5af82c66070302c2ac5891d361ad19c79d7b4b04

code/contracts/components/utils/IVersioned.sol 512877729a5e5223d57e219164d715f9e6c5d3d5

code/contracts/components/utils/Routed.sol c1b4dc914d6950414a5f75e0435d6c0ea76c6253

code/contracts/components/utils/StateMachines.sol 2df1e5c7e860032d9538431dbe87b413f95eb92c

code/contracts/errors/GeneralErrors.sol 62a44c6dd0d2941e991e79b136ca9d4d28e28674

code/contracts/token/Forta.sol f3770bf069882291bef2e8bf89d1aa64bcc9a40a

code/contracts/token/FortaBridgedPolygon.sol bf069925d545e442076850b4b0289fd81785de15

code/contracts/token/FortaCommon.sol 763e1bb902ff4a7ce2da39099191d2a0c0ec2ad8

code/contracts/tools/Distributions.sol 7e1ab43835a220da0629a67aa5730fd795614cb9

code/contracts/tools/ENSReverseRegistration.sol 95623ba7b059747fd31215500b2111185cf5d57c

code/contracts/tools/FrontRunningProtection.sol f6e33c05da28ef77093305fc3f6b8481342915bc

Appendix 2 - Disclosure
ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the
Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Speci�ically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our
review within this report. Any Solidity code itself presents unique and unquanti�iable risks as the Solidity language itself remains
under development and is subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other
areas beyond speci�ied code that could present security risks. Cryptographic tokens are emergent technologies and carry with
them high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) – on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the
use of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or
mean that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

https://consensys.net/

