CONSENSYS
@Dlllgence AUDITS FUZZING SCRIBBLE ABOUT

Rocket Pool Atlas (v1.2)

1 Executive Summary

1.1 Mitigations: 17 Mar 2023 Date January 2023
2 Scope . Dominik Muhs, Martin
Auditors
2.1 Objectives Ortner

3 Document Change Log

1 Executive Summary

4 System Overview

This report presents the results of our engagement with Rocket Pool to review their upcoming Rocket Pool Atlas release (v1.2).

5 Findings
5.1 The review was conducted over three weeks, from January 16, 2023 to February 03, 2023. A total of 2x15 person-days were
RocketNodeDistributorDelegate -
. g— spent.
Reentrancy in distribute()
allows node owner to drain
distributor funds A critical reentrancy issue in the node distributor has been found, allowing a node owner to drain funds from the respective
v Fixed distributor. Furthermore, several major severity issues have been found regarding the updated Minipool delegate contract and a

o node operator DAO contract.
5.2 RocketMinipoolDelegateOld -

Node operator may reenter

finalise() to manipulate 11 MitigationS: 17 Mar 2023

accounting v Fixed

Latest commit with changes: rocket-pool/rocketpool@ 77d7cca
5.3 RocketMinipoolDelegate -
Sandwiching of Minipool calls can : o i
have unintended side effects Compared to audit commit: rocket-pool/rocketpool@7771afa...77d7cca

The client provided code changes and remediation information for the findings outlined in this report. Details and can be found in
5.4 .o L
e e N e B e e e the Remediation Notes for the respective findings in Section: Findings.

No way to access ETH provided by

non-member votes e We removed one recommendation noting that zero initialization is unnecessary agreeing with and following the clients
Acknowledged remark that “[...]Being explicit even if redundant is not a problem.”.

5.5 Multiple checks-effects e We downgraded the finding “Missing extcodesize check in dynamic proxy” from major -> Medium in agreement with the client

violations as funds are not at immediate risk and they can recover from this problem. Nevertheless, this finding should be addressed as

5.6 Minipool state machine design per the recommendation.

I GENROREDL e We downgraded the finding “Duplicate check to avoid revert” from minor -> Informational given that it more a technical debt

Ack ledged
cunoneces than a concrete security issue and the client provided a the following out-of-band fix: rocket-pool/rocketpool@ sab7af1

5.7 RocketMinipoolDelegate -
Redundant refund() callon

forced finalization 'Medium 2 Scope

v Fixed

Our review focused on the following repositories:
5.8 Sparse documentation and

accounting complexity (Medium e rocketpool@7771afa...fde3f8c

Acknowledged

5.9 RocketNodeDistributor - Furthermore, the following information was provided:
Missing extcodesize checkin
dynamic proxy 'Medium e GitHub/Gist describing changes (accessed January 2023)
Won't Fix
2.1 Objectives

5.10 Kicked oDAO members' votes

taken into account 'Medium .)) e) . .
- Together with the client, we identified the following priorities for our review:

Acknowledged
511 1. Ensure that the system is implemented consistently with the intended functionality and without unintended edge cases.

RocketDAOProtocolSettingsRewards

) . : 2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
- settings key collission 'Medium

Acknowledged Smart Contract Weakness Classification Registry.

3. Review key risks in regard to recent changes flagged by the development team:

gcltzzketDAOProtocoISettingsRewards o . .

- missing setting delimiters e The minipool delegate has changed, and the possible state transitions are more complex.

Medium Acknowledged e The deposit credit system used for the lower ETH bonded minipools and solo migration is new

513 Use of [EEEE instead of e The minipool distribution (reward distribution) logic has changed considerably to incorporate partial withdrawals

specific contract types [(skimming), optimizing withdrawals, and solo migration. With the Shanghai hard fork, this will be the first time these
sElmilEe e features will be exercised in production.

5.14 Redundant double casts

inor R 3 Document Change Log

5.15 RocketMinipoolDelegate -

Missing event in prepareVacancy Version Date Description
[Minor AT
1.0 2023-02-06 Initial report
5.16 Compiler error due to missing
RocketMinipoolBaseInterface 11 2023-03-17 Updated Report: Mitigations
m ¥ Fixed
1.2 2023-03-24 Updated Report: Client provided a fix for 5.2

5.7 Unused Imports (I3
Partially Addressed

[]
5.18 RocketMinipool - Inconsistent 4 SYStem overVIeW
access control modifier

https://github.com/rocket-pool/rocketpool/commit/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6
https://github.com/rocket-pool/rocketpool/compare/7771afaff82e77a7525808056f2d60025fde3f8c..77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6
https://github.com/rocket-pool/rocketpool/commit/3ab7af12d4e1e4e82282fd4211ace74afaa1c6d3
https://github.com/rocket-pool/rocketpool/commit/7771afaff82e77a7525808056f2d60025fde3f8c
https://gist.github.com/kanewallmann/cace4e37a19b14e1dc0335389503ee7d
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

declaration onlyMinipoolOwner

5.19 RocketDAO*Settings -
settingNameSpace should be

immutable (V)

Acknowledged

This section describes the top-level/deployable contracts, their inheritance structure and interfaces, actors, permissions and

OGN O important contract interactions of the system under review.

Contracts are depicted as boxes. Public reachable interface methods are outlined as rows in the box. The - icon indicates that a
method is declared as non-state-changing (view/pure) while other methods may change state. A yellow dashed row at the top of
the contract shows inherited contracts. A green dashed row at the top of the contract indicates that that contract is used in a
usingFor declaration. Modifiers used as ACL are connected as yellow bubbles in front of methods.

GlobalStorage Vault Tokens

Utils

RewardPool RocketNetwork

o >to

Auction Manager Deposit Pool

MiniPool

RocketPool 1.2 - Architecture excluding ODAO

~

createMinipool

got minimum ETH
stake ETH with casper contrac
onlyOwner

awaiting user ETH deposit
RocketDepositPool

refund()
userDeposit()
beginUserDistribute() -> bal >8 eth

deposits to casper (sets creds) refund()
userDeposit()
voteScrub() -> dissolve

refund() calls withdrawal address

Minipool owner

preDeposit() (min 1eth)
Ly ‘v

reduceBondAmo’u_nt()

stake() deposits to casper (sig, dataroot unchecked)

DepositPool ;Y
NodeDeposit dennsit O
o 2N0S] promote(vacant)
MiniPoolManager — ——userDeposit omorel > -~. distributeBalance
DAOMember prepareVacancy. @ stake(not vacant) < lash finalised" e
Anyone /External Contract Initialized Sl meeed peendbeR
nitialize Prelaunch Staking fIna|IZ€()

can never be destroyed?

cannot be dissolved directly?

@ dissolve()

voteScrub() -> dissolve

recycles user balance

o close() sends address.this.balance to withdrawalAddress
distributeBalance (onlyOwner) 0

refund()

S>>
close()
Dissolved

Destroyed
marked as destroyed in global storage. contract still exists

RocketPool 1.2 - MiniPool State Diagram

5 Findings

Each issue has an assigned severity:

) issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 RocketNodeDistributorDelegate - Reentrancy in distribute() allows node owner to drain
distributor funds Fixed

Resolution

Fixed in https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9acOccbeet by implementing a
custom reentrancy guard via a new state variable 1ock that is appended to the end of the storage layout. The reentrancy
guard is functionally equivalent to the OpenZeppelin implementation. The method was not refactored to give user funds
priority over the node share. Additionally, the client provided the following statement:

We acknowledge this as a critical issue and have solved with a reentrancy guard.

https://consensys.net/diligence/audits/private/orqiqxzpl9j1ah/img/rocketPool-1-2.svg
https://consensys.net/diligence/audits/private/orqiqxzpl9j1ah/img/tm_rocketPool_states-1-2.svg
https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

We followed OpenZeppelin’s design for a reentrancy guard. We were unable to use it directly as it is hardcoded to
use storage slot O and because we already have deployment of this delegate in the wild already using storage slot
O for another purpose, we had to append it to the end of the existing storage layout.

Description

The distribute() function distributes the contract’s balance between the node operator and the user. The node operator is
returned their initial collateral, including a fee. The rest is returned to the RETH token contract as user collateral.

After determining the node owner’s share, the contract transfers et to the node withdrawal address, which can be the
configured withdrawal address or the node address. Both addresses may potentially be a malicious contract that recursively calls
back into the distribute() function to retrieve the node share multiple times until all funds are drained from the contract. The
distribute() function is not protected against reentrancy:

code/contracts/contract/node/RocketNodeDistributorDelegate.sol:L59-L73

/// @notice Distributes the balance of this contract to its owners
function distribute() override external {
// Calculate node share
uint256 nodeShare = getNodeShare();
// Transfer node share
address withdrawalAddress = rocketStorage.getNodeWithdrawalAddress(nodeAddress);
(bool success,) = withdrawalAddress.call{value : nodeShare}("");
require(success);
// Transfer user share
uint256 userShare = address(this).balance;
address rocketTokenRETH = rocketStorage.getAddress(rocketTokenRETHKey) ;
payable(rocketTokenRETH) .transfer(userShare) ;
// Emit event
emit FeesDistributed(nodeAddress, userShare, nodeShare, block.timestamp);

We also noticed that any address could set a withdrawal address as there is no check for the caller to be a registered node. In
fact, the caller can be the withdrawal address or node operator.

code/contracts/contract/RocketStorage.sol:L118-L133

// Set a node's withdrawal address
function setWithdrawalAddress(address _nodeAddress, address _newWithdrawalAddress, bool _confirm) external override {
// Check new withdrawal address
require(_newWithdrawalAddress != address(0x@), "Invalid withdrawal address");
// Confirm the transaction is from the node's current withdrawal address
address withdrawalAddress = getNodeWithdrawalAddress(_nodeAddress);
require(withdrawalAddress == msg.sender, "Only a tx from a node's withdrawal address can update it");
// Update immediately if confirmed
if (_confirm) {
updateWithdrawalAddress(_nodeAddress, _newWithdrawalAddress);

}
// Set pending withdrawal address if not confirmed
else {
pendingWithdrawalAddresses[_nodeAddress] = _newWithdrawalAddress;
}

Recommendation

Add a reentrancy guard to functions that interact with untrusted contracts. Adhere to the checks-effects pattern and send user
funds to the ‘trusted’ RETH contract first. Only then send funds to the node’s withdrawal address.

5.2 RocketMinipoolDelegateOld - Node operator may reenter finalise() to manipulate
accounting mm (Vs

Resolution

The client acknowledges the finding and provided the following statement:

We are aware of this issue (it was reported via our Immunefi bug bounty). It is live but that code path is
inaccessible. It requires the oDAO to mark a minipool as Withdrawable which we don’t do and have removed from
the withdrawal process moving forward.

In a later revision, the development team fixed the issue in the following commit:
73d5792a671db5d2f4dcbd35737e729f9e01aal1

Description

In the old Minipool delegate contract, a node operator may call the finalise() function to finalize a Minipool. As part of this
process, a call to _refund() may be performed if there is a node refund balance to be transferred. This will send an amount of
nodeRefundBalance iN ETH to the nodewithdrawaladdress Via a low-level call, handing over control flow to an - in terms of the system -
untrusted external account that this node operator controls. The node operator, therefore, is granted to opportunity to call back
into finalise() , Which is not protected against reentrancy and violates the checks-effects-interactions pattern (finalised = true iS
only set at the very end), to manipulate the following system settings:

® node.minipools.finalised.count<NodeAddress> : NodeAddress finalised count increased twice instead

https://github.com/rocket-pool/rocketpool/commit/73d5792a671db5d2f4dcbd35737e729f9e01aa11

* minipools.finalised.count : global finalised count increased twice

® eth.matched.node.amount<NodeAddress> - NodeAddress eth matched amount potentially reduced too many times; has an impact on
getNodeETHCollateralisationRatio -> GetNodeShare , getNodeETHProvided -> getNodeEffectiveRPLStake and
getNodeETHProvided->getNodeMaximumRPLStake->withdrawRPL and is the limiting factor when withdrawing RPL to ensure the pools stay
collateralized.

Note: RocketMinipoolDelegate0ld iS assumed to be the currently deployed MiniPool implementation. Users may upgrade from this
delegate to the new version and can roll back at any time and re-upgrade, even within the same transaction (see issue 5.3).

The following is an annotated call stack from a node operator calling minipool.finalise() reentering finalise() once more on their
Minipool:

finalise() -->
status == MinipoolStatus.Withdrawable //<-- true
withdrawalBlock > @ //<-- true
_finalise() -->
Ifinalised //<-- true
_refund()
nodeRefundBalance = @ //<-- reset refund balance
---> extCall: nodeWithdrawalAddress
---> reenter: finalise()
status == MinipoolStatus.Withdrawable //<-- true
withdrawalBlock > @ //<-- true
_finalise() -->
Ifinalised //<-- true
nodeRefundBalance > @ //<-- false; no refund()
address(this).balance to RETH
RocketTokenRETHINnterface(rocketTokenRETH) .depositExcessCollateral()
rocketMinipoolManager.incrementNodeFinalisedMinipoolCount(nodeAddress) //<-- 1st time
eventually call rocketDAONodeTrusted.decrementMemberUnbondedValidatorCount(nodeAddress);
finalised = true;
<--- return from reentrant call
<--- return from _refund()
address(this).balance to RETH //<-- NOP as balance was sent to RETH already
RocketTokenRETHINnterface(rocketTokenRETH) .depositExcessCollateral(); //<-- does not revert
rocketMinipoolManager.incrementNodeFinalisedMinipoolCount(nodeAddress); //<-- no revert, increases
'node.minipools.finalised.count', 'minipools.finalised.count', reduces 'eth.matched.node.amount' one to
many times
eventually call rocketDAONodeTrusted.decrementMemberUnbondedValidatorCount(nodeAddress); //<-- manipulates
‘member.validator.unbonded.count' by +1
finalised = true; //<-- is already 'true', gracefully continues
<--- returns

code/contracts/contract/old/minipool/RocketMinipoolDelegateOld.sol:L182-L191

// Called by node operator to finalise the pool and unlock their RPL stake

function finalise() external override onlyInitialised onlyMinipoolOwnerOrWithdrawalAddress(msg.sender) {
// Can only call if withdrawable and can only be called once
require(status == MinipoolStatus.Withdrawable, "Minipool must be withdrawable");
// Node operator cannot finalise the pool unless distributeBalance has been called
require(withdrawalBlock > @, "Minipool balance must have been distributed at least once");
// Finalise the pool
_finalise();

_refund() handing over control flow to nodewithdrawalAddress

code/contracts/contract/old/minipool/RocketMinipoolDelegateOld.sol:L311-L341

// Perform any slashings, refunds, and unlock NO's stake
function _finalise() private {
// Get contracts
RocketMinipoolManagerInterface rocketMinipoolManager = RocketMinipoolManagerInterface(getContractAddress("rocketMinipoolManz
// Can only fipalise the pool once
require(!finalised, "Minipool has already been finalised");
// If slash is required then perform it
if (nodeSlashBalance > 0) {
_slash();
}
// Refund node operator if required
if (nodeRefundBalance > 0) {
_refund();
}
// Send any left over ETH to rETH contract
if (address(this).balance > 0) {
// Send user amount to rETH contract
payable(rocketTokenRETH) .transfer(address(this) .balance);
}
// Trigger a deposit of excess collateral from rETH contract to deposit pool
RocketTokenRETHINnterface(rocketTokenRETH) .depositExcessCollateral();
// Unlock node operator's RPL
rocketMinipoolManager.incrementNodeFinalisedMinipoolCount(nodeAddress) ;
// Update unbonded validator count if minipool is unbonded
if (depositType == MinipoolDeposit.Empty) {
RocketDAONodeTrustedInterface rocketDAONodeTrusted = RocketDAONodeTrustedInterface(getContractAddress("rocketDAONodeTrus
rocketDAONodeTrusted.decrementMemberUnbondedValidatorCount(nodeAddress);
}
// Set finalised flag
finalised = true;

code/contracts/contract/old/minipool/RocketMinipoolDelegateOld.sol:L517-L528

function _refund() private {

uint256 refundAmount = nodeRefundBalance;
nodeRefundBalance = 0;

address nodeWithdrawalAddress = rocketStorage.getNodeWithdrawalAddress(nodeAddress);

(bool success,) = nodeWithdrawalAddress.call{value : refundAmount}("");
require(success, "ETH refund amount was not successfully transferred to node operator");

emit EtherWithdrawn(nodeWithdrawalAddress, refundAmount, block.timestamp);

Methods adjusting system settings called twice:

code/contracts/contract/old/minipool/RocketMinipoolManagerOld.sol:L265-L272

function incrementNodeFinalisedMinipoolCount(address _nodeAddress) override external onlylLatestContract("rocketMinipoolManager",
addUint(keccak256(abi.encodePacked("node.minipools.finalised.count”, _nodeAddress)), 1);

addUint (keccak256 (bytes("minipools.finalised.count")), 1);

code/contracts/contract/dao/node/RocketDAONodeTrusted.sol:L139-L142

}

function decrementMemberUnbondedValidatorCount(address _nodeAddress) override external onlylLatestContract("rocketDAONodeTrusted"
subUint (keccak256 (abi.encodePacked(daoNameSpace, "member.validator.unbonded.count"”, _nodeAddress)), 1);

}

Recommendation

We recommend setting the finalised = true flag immediately after checking for it. Additionally, the function flow should adhere to
the checks-effects-interactions pattern whenever possible. We recommend adding generic reentrancy protection whenever the
control flow is handed to an untrusted entity.

5.3 RocketMinipoolDelegate - Sandwiching of Minipool calls can have unintended side effects ;zm

Resolution

The client provided the following statement:

The slashed value is purely for NO informational purposes and not used in any logic in the contracts so this
example is benign as you say. We have fixed this particular issue by moving the slashed boolean out of the delegate
and into RocketMinipoolLManager. It is now set on any call to rocketNodeStaking.slashRPL which covers both old
delegate and new.

We appreciate that the finding was more a classification of potential issues with upgrades and rollbacks. At this
stage, we cannot change this functionality as it is already deployed in a non-upgradable way to over 12,000
contracts.

As this is more of a guidance and there is no immediate threat, we don’t believe this should be considered a ‘major’
finding.

With https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9acOccbeeh the siashed flag was

moved to RocketNodeStaking.slashRPL() (minipool.rpl.slashed|<msg.sender> = true)

The audit team acknowledges that this issue does not provide a concrete exploit that puts funds at risk. However, due to the
sensitive nature and potential for issues regarding future updates, we stand by the initial severity rating as it stands for
security vulnerabilities that may not be directly exploitable or require certain conditions to be exploited.

Description

The RocketMinipoolBase contract exposes the functions delegateupgrade and delegaterollback , allowing the minipool owner to switch
between delegate implementations. While giving the minipool owner a chance to roll back potentially malfunctioning upgrades,
the fact that upgrades and rollback are instantaneous also gives them a chance to alternate between executing old and new code
(e.g. by utilizing callbacks) and sandwich user calls to the minipool.

Examples

Assuming the latest minipool delegate implementation, any user can call RocketMinipoolDelegate.slash , Which slashes the node
operator’s RPL balance if a slashing has been recorded on their validator. To mark the minipool as having been slashed, the
slashed contract variable is set to true . A minipool owner can avoid this flag from being set By sandwiching the user calls:

1. Minipool owner rolls back to the old implementation from RocketMinipoolDelegate0ld.sol
2. User calls siash on the now old delegate implementation (where siashed is not set)

3. Minipool owner upgrades to the latest delegate implementation again
In detail, the new slash implementation:

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L687-L696

https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

function _slash() private {
// Get contracts
RocketNodeStakingInterface rocketNodeStaking = RocketNodeStakingInterface(getContractAddress("rocketNodeStaking"));
// Slash required amount and reset storage value
uint256 slashAmount = nodeSlashBalance;
nodeSlashBalance = 0;
rocketNodeStaking.slashRPL(nodeAddress, slashAmount);
// Record slashing
slashed = true;

Compared to the old slash implementation:

code/contracts/contract/old/minipool/RocketMinipoolDelegateOld.sol:L531-L539

function _slash() private {
// Get contracts
RocketNodeStakingInterface rocketNodeStaking = RocketNodeStakingInterface(getContractAddress("rocketNodeStaking"));
// Slash required amount and reset storage value
uint256 slashAmount = nodeSlashBalance;
nodeSlashBalance = 0;
rocketNodeStaking.slashRPL(nodeAddress, slashAmount);

While the bypass of siashed being set is a benign example, the effects of this issue, in general, could result in a significant
disruption of minipool operations and potentially affect the system’s funds. The impact highly depends on the changes
introduced by future minipool upgrades.

Recommendation

We recommend limiting upgrades and rollbacks to prevent minipool owners from switching implementations with an immediate
effect. A time lock can fulfill this purpose when a minipool owner announces an upgrade to be done at a specific block. A
warning can precede user-made calls that an upgrade is pending, and their interaction can have unintended side effects.

5.4 RocketDAONodeTrustedActions - No way to access ETH provided by non-member votes =m

Acknowledged

Resolution

According to the client, this is the intended behavior. The client provided the following statement:

This is by design.

Description

DAO members can challenge nodes to prove liveliness for free. Non-DAO members must provide members.challenge.cost = 1 eth tO
start a challenge. However, the provided challenge cost is locked within the contract instead of being returned or recycled as
system collateral.

Examples

code/contracts/contract/dao/node/RocketDAONodeTrustedActions.sol:L181-L192

// In the event that the majority/all of members go offline permanently and no more proposals could be passed, a current member or

// If it does not respond in the given window, it can be removed as a member. The one who removes the member after the challenge is
// This should only be used in an emergency situation to recover the DAO. Members that need removing when consensus is still viable
function actionChallengeMake(address _nodeAddress) override external onlyTrustedNode(_nodeAddress) onlyRegisteredNode(msg.sender

// Load contracts

RocketDAONodeTrustedInterface rocketDAONode = RocketDAONodeTrustedInterface(getContractAddress("rocketDAONodeTrusted"));
RocketDAONodeTrustedSettingsMembersInterface rocketDAONodeTrustedSettingsMembers = RocketDAONodeTrustedSettingsMembersInterf
// Members can challenge other members for free, but for a regular bonded node to challenge a DAO member, requires non-refundat
if(rocketDAONode.getMemberIsValid(msg.sender) != true) require(msg.value == rocketDAONodeTrustedSettingsMembers.getChallenge
// Can't challenge yourself duh

require(msg.sender != _nodeAddress, "You cannot challenge yourself");

// Is this member already being challenged?

Recommendation

We recommend locking the ETH inside the contract during the challenge process. If a challenge is refuted, we recommend
feeding the locked value back into the system as protocol collateral. If the challenge succeeds and the node is kicked, it is
assumed that the challenger will be repaid the amount they had to lock up to prove non-liveliness.

5.5 Multiple checks-effects violations =

Resolution

The client provided the following statement:

In many of the cited examples, the “external call” is a call to another network contract that has the same privileges
as the caller. Preventing reentrancy against our own internal contracts provides no additional security. If a
malicious contract is introduced via a malicious oDAO they already have full keys to the kingdom.

None of the examples provide an attack surface and so we don’t believe this to be a ‘major’ finding and should be
downgraded.

This finding highlights our concerns about a dangerous pattern used throughout the codebase that may eventually lead to
exploitable scenarios if continued to be followed, especially on codebases that do not employ protective measures against
reentrant calls. This report also flagged one such exploitable instance, leading to a critical exploitable issue in one of the
components.

This repeated occurrence led us to flag this as a major issue to highlight a general error and attack surface present in several
places.

From our experience, there are predominantly positive side-effects of adhering to safe coding patterns, even for trusted
contract interactions, as developers indirectly follow or pick up the coding style from existing code, reducing the likelihood
of following a pattern that may be prone to be taken advantage of.

For example, to a developer, it might not always be directly evident that control flow is passed to potentially untrusted
components/addresses from the code itself, especially when calling multiple ‘trusted’ components in the system.
Furthermore, individual components down the call stack may be updated at later times, introducing an untrusted external
call (i.e., because funds are refunded) and exposing the initially calling contract to a reentrancy-type issue. Therefore, we
highly recommend adhering to a safe checks-effects pattern even though the contracts mainly interact with other trusted
components and build secure code based on defense-in-depth principles to contain potential damage in favor of assuming
worst-case scenarios.

Description

Throughout the system, there are various violations of the checks-effects-interactions pattern where the contract state is updated

after an external call. Since large parts of the Rocket Pool system’s smart contracts are not guarded against reentrancy, the
external call’s recipient may reenter and potentially perform malicious actions that can impact the overall accounting and, thus,
system funds.

Examples

distributeToowner() Sends the contract’s balance to the node or the withdrawal address before clearing the internal accounting:

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L564-L581

/// @notice Withdraw node balances from the minipool and close it. Only accepts calls from the owner
function close() override external onlyMinipoolOwner(msg.sender) onlyInitialised {
// Check current status
require(status == MinipoolStatus.Dissolved, "The minipool can only be closed while dissolved");
// Distribute funds to owner
distributeToOwner();
// Destroy minipool

RocketMinipoolManagerInterface rocketMinipoolManager = RocketMinipoolManagerInterface(getContractAddress("rocketMinipoolManz

require(rocketMinipoolManager.getMinipoolExists(address(this)), "Minipool already closed");
rocketMinipoolManager.destroyMinipool();

// Clear state

nodeDepositBalance = 0;

nodeRefundBalance = 0;

userDepositBalance = 0;

userDepositBalancelegacy = 0;

userDepositAssignedTime = 0;

The withdrawal block should be set before any other contracts are called:

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L498-L499

// Save block to prevent multiple withdrawals within a few blocks
withdrawalBlock = block.number;

The siashed state should be set before any external calls are made:

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L686-L696

/// @dev Slash node operator's RPL balance based on nodeSlashBalance
function _slash() private {
// Get contracts
RocketNodeStakingInterface rocketNodeStaking = RocketNodeStakingInterface(getContractAddress("rocketNodeStaking"));
// Slash required amount and reset storage value
uint256 slashAmount = nodeSlashBalance;
nodeSlashBalance = 0;
rocketNodeStaking.slashRPL(nodeAddress, slashAmount);
// Record slashing
slashed = true;

In the bond reducer, the accounting values should be cleared before any external calls are made:

code/contracts/contract/minipool/RocketMinipoolBondReducer.sol:L120-L134

uint256 newBondAmount = getUint(keccak256(abi.encodePacked("minipool.bond.reduction.value", msg.sender)));
require(rocketNodeDeposit.isValidDepositAmount(newBondAmount), "Invalid bond amount");

uint256 existingBondAmount = minipool.getNodeDepositBalance();
uint256 delta = existingBondAmount.sub(newBondAmount) ;

address nodeAddress = minipool.getNodeAddress();
rocketNodeDeposit.increaseEthMatched(nodeAddress, delta);
rocketNodeDeposit.increaseDepositCreditBalance(nodeAddress, delta);

deleteUint(keccak256(abi.encodePacked("minipool.bond.reduction.time", msg.sender)));
deleteUint (keccak256(abi.encodePacked("minipool.bond.reduction.value", msg.sender)));

The counter for reward snapshot execution should be incremented before RPL gets minted:

code/contracts/contract/rewards/RocketRewardsPool.sol:L210-L213

rplContract.inflationMintTokens() ;

incrementRewardIndex() ;

Recommendation

We recommend following the checks-effects-interactions pattern and adjusting any contract state variables before making
external calls. With the upgradeable nature of the system, we also recommend strictly adhering to this practice when all external
calls are being made to trusted network contracts.

5.6 Minipool state machine design and pseudo-states widium Acknowledged

Resolution

The client acknowledges the finding and provided the following statement.
We agree that the state machine is complicated. This is a symptom of technical debt and backwards compatibility.

There is no actionable response to this finding as we cannot make changes to the existing 12,000 contracts already
deployed.

We want to emphasize that this finding strongly suggests that there are design deficits in the minipool state machine that,
sooner or later, may impact the overall system'’s security. We suggest refactoring a clean design with clear transitions and
states for the current iteration removing technical debt from future versions. This may mean that it may be warranted to
release a new major Rocketpool version as a standalone system with a clean migration path avoiding potential problems
otherwise introduced by dealing with the current technical debt.

Description

The development team has provided the assessment team with a Minipool state machine diagram. In this document, the
Destroyed and Finalised States are denoted as fully qualified Minipool states. However, these conditions are pseudo-states.
Specifically, the pestroyed pseudo-state leaves the Minipool in the actual pissolved state and removes it from the Minipool
accounting components. The Finalised pseudo-state sets the finalised flag on the Minipool without changing its original state.
Actors may still be able to execute functions on the Minipool while it should be in an end state.

Recommendation

We strongly discourage the use of pseudo-states in state machines as they make the state machine less intuitive and present
challenges in mapping state transitions to the code base. Real states and transitions should be used where possible.

Generally, we recommend the following when designing state machines:

e Using clear and descriptive transition names,
e Avoiding having multiple transitions with the same trigger,

e Modeling decisions in the form of state transitions rather than states themselves.

In any case, every Minipool should terminate in a clear end state.

5.7 RocketMinipoolDelegate - Redundant refund() call on forced finalization wedium (Ve

Resolution

Fixed in https://github.com/rocket-pool/rocketpool/tree/77d7ccab65b7c0557cfda078a4fc45f9acOccbeeb by refactoring
refund() to avoid a double invocation of _refund() inthe _finalise() codepath.

Fixed per the recommendation. Thanks.

Description

https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

The RocketMinipoolDelegate.refund function will force finalization if a user previously distributed the pool. However, _finalise already
calls _refund() if there is a node refund balance to transfer, making the additional call to _refund() in refund() Obsolete.

Examples

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L200-L209

function refund() override external onlyMinipoolOwnerOrWithdrawalAddress(msg.sender) onlyInitialised {
require(nodeRefundBalance > @, "No amount of the node deposit is available for refund");
if (!finalised && userDistributed) {

_finalise();

}

_refund();

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L445-L459

function _finalise() private {
RocketMinipoolManagerInterface rocketMinipoolManager = RocketMinipoolManagerInterface(getContractAddress("rocketMinipoolManz
require(!finalised, "Minipool has already been finalised");
finalised = true;

if (nodeSlashBalance > 0) {
_slash();
}

if (nodeRefundBalance > 0) {
_refund();
}

Recommendation

We recommend refactoring the if condition to contain _refund() in the else branch.

5.8 Sparse documentation and accounting complexity iwedium Acknowledged

Resolution

The client acknowledges the finding and provided the following statement:

Acknowledged and agree.

Description

Throughout the project, inline documentation is either sparse or missing altogether. Furthermore, few technical documents
about the system’s design rationale are available. The recent releases' increased complexity makes it significantly harder to trace
the flow of funds through the system as components change semantics, are split into separate contracts, etc.

It is essential that documentation not only outlines what is being done but also why and what a function’s role in the system’s
“bigger picture” is. Many comments in the code base fail to fulfill this requirement and are thus redundant, e.g.

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L292-L293

require(nodeRefundBalance == @, "Refund balance not zero");

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L333-L334

rocketMinipoolManager.removeVacantMinipool();

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L381-L383

if (ownerCalling) {

_finalise();

The increased complexity and lack of documentation can increase the likelihood of developer error. Furthermore, the time spent
maintaining the code and introducing new developers to the code base will drastically increase. This effect can be especially
problematic in the system’s accounting of funds as the various stages of a Minipool imply different flows of funds and interactions
with external dependencies. Documentation should explain the rationale behind specific hardcoded values, such as the magic

8 ether boundary for withdrawal detection. An example of a lack of documentation and distribution across components is the
calculation and influence of ethmMatched as it plays a role in:

¢ the minipool bond reducer,
e the node deposit contract,

e the node manager, and

e the node staking contract.

Recommendation

As the Rocketpool system grows in complexity, we highly recommend significantly increasing the number of inline comments
and general technical documentation and exploring ways to centralize the system’s accounting further to provide a clear picture
of which funds move where and at what point in time. Where the flow of funds is obscured because multiple components or
multi-step processes are involved, we recommend adding extensive inline documentation to give context.

5.9 RocketNodeDistributor - Missing extcodesize check in dynamic proxy wedium = wont rix

Resolution

The client decided not to address the finding with the upcoming update. As per their assessment, the scenario outlined
would require a series of misconfigurations/failures and hence is unlikely to happen. Following a defense-in-depth approach
we, nevertheless, urge to implement safeguards on multiple layers as a condition like this can easily go undetected.
However, after reviewing the feedback provided by the client we share the assessment that the finding should be
downgraded from major to Medium as funds are not at immediate risk and they can recover from this problem by fixing the
delegate. For transparency, the client provided the following statement:

Agree that an extcodesize check here would add safety against a future mistake. But it does require a failure at
many points for it to actually lead to an issue. Beacuse this contract is not getting upgraded in Atlas, we will leave it
as is. We will make note to add a safety check on it in a future update of this contract.

We don’t believe this consitutes a ‘major’ finding given that it requires a future significant failure. If such a failure
were to happen, the impact is also minimal as any calls to distribute() would simply do nothing. A contract upgrade
would fix the problem and no funds would be at risk.

Description

RocketNodeDistributor dynamically retrieves the currently set delegate from the centralized Rrocketstorage contract. The target
contract (delegate) is resolved inside the fallback function. It may return address(8) . rocketStorage.getAddress() does not enforce that
the requested settings key exists, which may lead to RocketNodedDistributor delegate-calling into address(e) , which returns no error.
This might stay undetected when calling RocketNodeDistributorDelegate.distribute() as the method does not return a value, which is
consistent with calling a target address with no code.

Examples

code/contracts/contract/node/RocketNodeDistributor.sol:L23-L31

fallback() external payable {
address _target = rocketStorage.getAddress(distributorStorageKey);
assembly {
calldatacopy(0x0, 6x0, calldatasize())
let result := delegatecall(gas(), _target, 0x@, calldatasize(), 0x0, 0)
returndatacopy(0x0, 0x0, returndatasize())
switch result case @ {revert(@, returndatasize())} default {return (@, returndatasize())}

code/contracts/contract/RocketStorage.sol:L153-L155

function getAddress(bytes32 _key) override external view returns (address r) {
return addressStorage|[_key];

}

Recommendation

Before delegate-calling into the target contract, check if it exists.

assembly {
codeSize := extcodesize(_target)

}

require(codeSize > 0);

510 Kicked oDAO members' votes taken into account wedivm ~ Acknowledged

Resolution

The client acknowledges the finding and provided the following statement:

We are aware of this limitation but the additional changes required to implement a fix outweigh the concern in our
opinion.

Description

oDAO members can vote on proposals or submit external data to the system, acting as an oracle. Data submission is based on a
vote by itself, and multiple oDAO members must submit the same data until a configurable threshold (51% by default) is reached

for the data to be confirmed.

When a member gets kicked or leaves the oDAO after voting, their vote is still accounted for while the total number of oDAO
members decreases.

A (group of) malicious oDAO actors may exploit this fact to artificially lower the consensus threshold by voting for a proposal and
then leaving the oDAO. This will leave excess votes with the proposal while the total member count decreases.

For example, let’s assume there are 177 oDAO members. 9 members must vote for the proposal for it to pass (52.9%). Let’s assume
8 members voted for, and the rest abstained and is against the proposal (47%, threshold not met). The proposal is unlikely to pass
unless two malicious oDAO members leave the DAO, lowering the member count to 15 in an attempt to manipulate the vote,
suddenly inflating vote power from 8/17 (47%; rejected) to 8/15 (53.3%; passed).

The crux is that the votes of ex-oDAO members still count, while the quorum is based on the current oDAO member number.
Here are some examples, however, this is a general pattern used for oDAO votes in the system.

Example: RocketNetworkPrices

Members submit votes via submitprices() . If the threshold is reached, the proposal is executed. Quorum is based on the current
oDAO member count, votes of ex-oDAO members are still accounted for. If a proposal is a near miss, malicious actors can force
execute it by leaving the oDAO, lowering the threshold, and then calling executeupdateprices() to execute it.

code/contracts/contract/network/RocketNetworkPrices.sol:L75-L79

RocketDAONodeTrustedInterface rocketDAONodeTrusted = RocketDAONodeTrustedInterface(getContractAddress("rocketDAONodeTrusted"));
if (calcBase.mul(submissionCount).div(rocketDAONodeTrusted.getMemberCount()) >= rocketDAOProtocolSettingsNetwork.getNodeConsensu
// Update the price
updatePrices(_block, _rplPrice);

code/contracts/contract/network/RocketNetworkPrices.sol:L85-L86

function executeUpdatePrices(uint256 _block, uint256 _rplPrice) override external onlylLatestContract("rocketNetworkPrices", addr
// Check settings

RocketMinipoolBondReducer

The RocketMinipoolBondReducer CONtract’s votecancelReduction function takes old votes of previously kicked oDAO members into
account. This results in the vote being significantly higher and increases the potential for malicious actors, even after their
removal, to sway the vote. Note that a canceled bond reduction cannot be undone.

code/contracts/contract/minipool/RocketMinipoolBondReducer.sol:L94-L98

RocketDAONodeTrustedSettingsMinipoolInterface rocketDAONodeTrustedSettingsMinipool = RocketDAONodeTrustedSettingsMinipoolInterfe
uint256 quorum = rocketDAONode.getMemberCount().mul(rocketDAONodeTrustedSettingsMinipool.getCancelBondReductionQuorum()).div(cal
bytes32 totalCancelVotesKey = keccak256(abi.encodePacked("minipool.bond.reduction.vote.count”, _minipoolAddress));

uint256 totalCancelVotes = getUint(totalCancelVotesKey).add(1);

if (totalCancelVotes > quorum) {

RocketNetworkPenalties

code/contracts/contract/network/RocketNetworkPenalties.sol:L47-L51

RocketDAONodeTrustedInterface rocketDAONodeTrusted = RocketDAONodeTrustedInterface(getContractAddress("rocketDAONodeTrusted"));
if (calcBase.mul(submissionCount).div(rocketDAONodeTrusted.getMemberCount()) >= rocketDAOProtocolSettingsNetwork.getNodePenaltyT
setBool(executedKey, true);
incrementMinipoolPenaltyCount(_minipoolAddress);

code/contracts/contract/network/RocketNetworkPenalties.sol:L54-L58

// Executes incrementMinipoolPenaltyCount if consensus threshold is reached

function executeUpdatePenalty(address _minipoolAddress, uint256 _block) override external onlylLatestContract("rocketNetworkPenal
// Get contracts
RocketDAOProtocolSettingsNetworkInterface rocketDAOProtocolSettingsNetwork = RocketDAOProtocolSettingsNetworkInterface(getCc
// Get submission keys

Recommendation

Track oDAO members' votes and remove them from the tally when the removal from the oDAO is executed.

5.11 RocketDAOProtocolSettingsRewards - settings key collission wedium Acknowledged

Resolution

The client acknowledges the finding and provided the following statement:

We are aware of this limitation but making this change now with an existing deployment outweighs the concern in
our opinion.

Description

A malicious user may craft a DAO protocol proposal to set a rewards claimer for a specific contract, thus overwriting another
contract’s settings. This issue arises due to lax requirements when choosing safe settings keys.

code/contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsRewards.sol:L36-L49

function setSettingRewardsClaimer(string memory _contractName, uint256 _perc) override public onlyDAOProtocolProposal {
// Get the total perc set, can't be more than 100
uint256 percTotal = getRewardsClaimersPercTotal();
// If this group already exists, it will update the perc
uint256 percTotalUpdate = percTotal.add(_perc).sub(getRewardsClaimerPerc(_contractName));
// Can't be more than a total claim amount of 100%
require(percTotalUpdate <= 1 ether, "Claimers cannot total more than 100%");
// Update the total
setUint (keccak256(abi.encodePacked(settingNameSpace, "rewards.claims”, "group.totalPerc")), percTotalUpdate);
// Update/Add the claimer amount

setUint(keccak256(abi.encodePacked(settingNameSpace, "rewards.claims”, "group.amount"”, _contractName)), _perc);
// Set the time it was updated at
setUint(keccak256(abi.encodePacked(settingNameSpace, "rewards.claims", "group.amount.updated.time", _contractName)), block.t

The method updates the rewards claimer for a specific contract by writing to the following two setting keys:

® settingNameSpace.rewards.claimsgroup.amount<_contractName>

® settingNameSpace.rewards.claimsgroup.amount.updated.time<_contractName>

Due to the way the settings hierarchy was chosen in this case, a malicious proposal might define a
<_contractName> = .updated.time<targetContract> that overwrites the settings of a different contract with an invalid value.

Note that the issue of delimiter consistency is also discussed in issue 5.12.

The severity rating is based on the fact that this should be detectable by DAO members. However, following a defense-in-depth
approach means that such collisions should be avoided wherever possible.

Recommendation

We recommend enforcing a unique prefix and delimiter when concatenating user-provided input to setting keys. In this specific
case, the settings could be renamed as follows:

® settingNameSpace.rewards.claimsgroup.amount.value<_contractName>

® settingNameSpace.rewards.claimsgroup.amount.updated.time<_contractName>

5.12 RocketDAOProtocolSettingsRewards - missing setting delimiters wedium acknowtedged

Resolution

The client acknowledges the finding and provided the following statement:

We are aware of this limitation but making this change now with an existing deployment outweighs the concern in
our opinion.

Description
Settings in the Rocket Pool system are hierarchical, and namespaces are prefixed using dot delimiters.

Calling abi.encodePacked(<string>, <string>) ON strings performs a simple concatenation. According to the settings' naming scheme,
it is suggested that the following example writes to a key named: <settingNameSpace>.rewards.claims.group.amount.<_contractName> .
However, due to missing delimiters, the actual key written to is: <settingNameSpace>.rewards.claimsgroup.amount<_contractName> .

Note that there is no delimiter between claims|group and amount|<_contractName> .

code/contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsRewards.sol:L36-L49

function setSettingRewardsClaimer(string memory _contractName, uint256 _perc) override public onlyDAOProtocolProposal {
// Get the total perc set, can't be more than 160
uint256 percTotal = getRewardsClaimersPercTotal();
// If this group already exists, it will update the perc
uint256 percTotalUpdate = percTotal.add(_perc).sub(getRewardsClaimerPerc(_contractName));
// Can't be more than a total claim amount of 100%
require(percTotalUpdate <= 1 ether, "Claimers cannot total more than 100%");
// Update the total

setUint(keccak256(abi.encodePacked(settingNameSpace, "rewards.claims”, "group.totalPerc")), percTotalUpdate);

// Update/Add the claimer amount

setUint(keccak256(abi.encodePacked(settingNameSpace, "rewards.claims", "group.amount”, _contractName)), _perc);

// Set the time it was updated at

setUint(keccak256(abi.encodePacked(settingNameSpace, "rewards.claims", "group.amount.updated.time", _contractName)), block.t

Recommendation

We recommend adding the missing intermediate delimiters. The system should enforce delimiters after the last setting key
before user input is concatenated to reduce the risk of accidental namespace collisions.

5.13 Use of address instead of specific contract types o™ acknowiedged

Resolution

The client acknowledges the finding, removed the unnecessary casts from canreduceBondAmount and voteCancelReduction With
https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9acOccbece6, and provided the following
statement:

Acknowledged. We will migrate to this pattern as we upgrade contracts.

Description

Rather than using a low-level address type and then casting to the safer contract type, it's better to use the best type available by
default so the compiler can eventually check for type safety and contract existence and only downcast to less secure low-level
types (address) when necessary.

Examples

RocketStorageInterface _rocketStorage Should be declared in the arguments, removing the need to cast the address explicitly.

code/contracts/contract/minipool/RocketMinipoolBase.sol:L39-L47

/// @notice Sets up starting delegate contract and then delegates initialisation to it
function initialise(address _rocketStorage, address _nodeAddress) external override notSelf {
// Check input
require(_nodeAddress != address(0), "Invalid node address");
require(storageState == StorageState.Undefined, "Already initialised");
// Set storage state to uninitialised
storageState = StorageState.Uninitialised;
// Set rocketStorage
rocketStorage = RocketStorageInterface(_rocketStorage);

RocketMinipoolInterface _minipoolAddress Should be declared in the arguments, removing the need to cast the address explicitly.
Downcast to low-level address if needed. The event can be redeclared with the contract type.

code/contracts/contract/minipool/RocketMinipoolBondReducer.sol:L33-L34

function beginReduceBondAmount(address _minipoolAddress, uint256 _newBondAmount) override external onlylLatestContract("rocketMin
RocketMinipoolInterface minipool = RocketMinipoolInterface(_minipoolAddress);

code/contracts/contract/minipool/RocketMinipoolBondReducer.sol:L69-L76

/// @notice Returns whether owner of given minipool can reduce bond amount given the waiting period constraint
/// @param _minipoolAddress Address of the minipool
function canReduceBondAmount(address _minipoolAddress) override public view returns (bool) {
RocketMinipoolInterface minipool = RocketMinipoolInterface(_minipoolAddress);
RocketDAONodeTrustedSettingsMinipoolInterface rocketDAONodeTrustedSettingsMinipool = RocketDAONodeTrustedSettingsMinipoolInt
uint256 reduceBondTime = getUint(keccak256(abi.encodePacked("minipool.bond.reduction.time", _minipoolAddress)));
return rocketDAONodeTrustedSettingsMinipool.isWithinBondReductionWindow(block.timestamp.sub(reduceBondTime));

code/contracts/contract/minipool/RocketMinipoolBondReducer.sol:L80-L84

function voteCancelReduction(address _minipoolAddress) override external onlyTrustedNode(msg.sender) onlylLatestContract("rocketV
// Prevent calling if consensus has already been reached
require(!getReduceBondCancelled(_minipoolAddress), "Already cancelled");
// Get contracts
RocketMinipoolInterface minipool = RocketMinipoolInterface(_minipoolAddress);

Note that abi.encodex(contractType) assumes address for contract types by default. An explicit downcast is not required.

» Test example = Test(0@x5B38Da6a7061c568545dCfcBO3FcB875f56beddC4)
» abi.encodePacked("hi", example)
0x68695h38daba701c568545dcfcb@3fcb875f56beddc4

» abi.encodePacked("hi", address(example))
0x68695b38da6a701c568545dcfchB3fcb875f56beddc4

More examples of address _minipool declarations:

code/contracts/contract/minipool/RocketMinipoolManager.sol:L449-L455

/// @dev Internal logic to set a minipool's pubkey
/// @param _pubkey The pubkey to set for the calling minipool
function _setMinipoolPubkey(address _minipool, bytes calldata _pubkey) private {
// Load contracts
AddressSetStorageInterface addressSetStorage = AddressSetStorageInterface(getContractAddress("addressSetStorage"));
// Initialize minipool & get properties
RocketMinipoolInterface minipool = RocketMinipoolInterface(_minipool);

code/contracts/contract/minipool/RocketMinipoolManager.sol:L474-L478

function getMinipoolDetails(address _minipoolAddress) override external view returns (MinipoolDetails memory) {
// Get contracts
RocketMinipoolInterface minipoolInterface = RocketMinipoolInterface(_minipoolAddress);
RocketMinipoolBase minipool = RocketMinipoolBase(payable(_minipoolAddress));
RocketNetworkPenaltiesInterface rocketNetworkPenalties = RocketNetworkPenaltiesInterface(getContractAddress("rocketNetworkPe

More examples of RocketStorageInterface _rocketStorage Casts:

https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6,

code/contracts/contract/node/RocketNodeDistributor.sol:L8-L13

contract RocketNodeDistributor is RocketNodeDistributorStoragelLayout {
bytes32 immutable distributorStorageKey;

constructor(address _nodeAddress, address _rocketStorage) {
rocketStorage = RocketStorageInterface(_rocketStorage);
nodeAddress = _nodeAddress;

Recommendation

We recommend using more specific types instead of address where possible. Downcast if necessary. This goes for parameter
types as well as state variable types.

514 Redundant double casts g acknowledged

Resolution

The client acknowledges the finding and provided the following statement:

Acknowledged. These contracts are non-upgradable.

Description

_rocketStorageAddress IS already of contract type RocketStorageInterface .

code/contracts/contract/RocketBase.sol:L78-L82

/// @dev Set the main Rocket Storage address
constructor(RocketStorageInterface _rocketStorageAddress) {

// Update the contract address

rocketStorage = RocketStorageInterface(_rocketStorageAddress);

_tokenAddress IS already of contract type EerczeBurnable .

code/contracts/contract/RocketVault.sol:L132-L138

function burnToken(ERC20BBurnable _tokenAddress, uint256 _amount) override external onlylLatestNetworkContract {

// Get contract key
bytes32 contractKey = keccak256(abi.encodePacked(getContractName(msg.sender), _tokenAddress));

// Update balances

tokenBalances[contractKey] = tokenBalances[contractKey].sub(_amount);
// Get the token ERC20 instance

ERC20Burnable tokenContract = ERC20Burnable(_tokenAddress);

_rocketTokenRPLFixedSupplyAddress IS already of contract type 1ercze .

code/contracts/contract/token/RocketTokenRPL.sol:L47-L51

constructor(RocketStorageInterface _rocketStorageAddress, IERC20 _rocketTokenRPLFixedSupplyAddress) RocketBase(_rocketStorageAdc

// Version

version = 1;

// Set the mainnet RPL fixed supply token address
rplFixedSupplyContract = IERC20(_rocketTokenRPLFixedSupplyAddress);

Recommendation

We recommend removing the unnecessary double casts and copies of local variables.

5.15 RocketMinipoolDelegate - Missing eventin prepareVacancy gmm (Ve

Resolution

Fixed in https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9acOccbeeb by emitting a new

event MinipoolVacancyPrepared .

Agreed. Added event per recommendation. Thanks.

Description

The function preparevacancy updates multiple contract state variables and should therefore emit an event.

Examples

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L286-L309

https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

/// @dev Sets the bond value and vacancy flag on this minipool

/// @param _bondAmount The bond amount selected by the node operator

/// @param _currentBalance The current balance of the validator on the beaconchain (will be checked by oDAO and scrubbed if not cor

function prepareVacancy(uint256 _bondAmount, uint256 _currentBalance) override external onlylLatestContract("rocketMinipoolManage
// Check status

require(status == MinipoolStatus.Initialised, "Must be in initialised status");
// Sanity check that refund balance is zero
require(nodeRefundBalance == @, "Refund balance not zero");

// Check balance

RocketDAOProtocolSettingsMinipoolInterface rocketDAOProtocolSettingsMinipool = RocketDAOProtocolSettingsMinipoolInterface(ge
uint256 launchAmount = rocketDAOProtocolSettingsMinipool.getLaunchBalance();
require(_currentBalance >= launchAmount, "Balance is too low");

// Store bond amount

nodeDepositBalance = _bondAmount;

// Calculate user amount from launch amount

userDepositBalance = launchAmount.sub(nodeDepositBalance);

// Flag as vacant

vacant = true;

preMigrationBalance = _currentBalance;

// Refund the node whatever rewards they have accrued prior to becoming a RP validator
nodeRefundBalance = _currentBalance.sub(launchAmount);

// Set status to prelLaunch

setStatus(MinipoolStatus.Prelaunch);

Recommendation

Emit the missing event.

5.16 Compiler error due to missing RocketMinipoolBaseInterface mm [Wwrea

Resolution

Fixed in https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9acOccbeceh by adding the
missing interface file.

Description

The interface RocketMinipoolBaseInterface IS Missing from the code repository. Manually generating the interface and adding it to the
repository fixes the error.

= npx hardhat compile
Error HH404: File ../../interface/minipool/RocketMinipoolBaselInterface.sol, imported from contracts/contract/minipool/RocketMinipoolBase.sol, not founc

For more info go to https://hardhat.org/HH404 or run Hardhat with --show-stack-traces

Recommendation

Add the missing source unit to the repository.

5.17 Unused |mp0rts m Partially Addressed

Resolution

Addressed in https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9acOccbeeb by removing
all but the following two mentioned unused imports:

® RocketRewardsPoolInterface

® RocketSmoothingPoolInterface

Description
The following source units are imported but not referenced in the importing source unit:

code/contracts/contract/rewards/RocketMerkleDistributorMainnet.sol:L11

import "../../interface/rewards/RocketSmoothingPoolInterface.sol";

code/contracts/contract/minipool/RocketMinipoolFactory.sol:L12-L18

import "../../interface/minipool/RocketMinipoolManagerInterface.sol";

import "../../interface/minipool/RocketMinipoolQueueInterface.sol";

import "../../interface/node/RocketNodeStakingInterface.sol";

import "../../interface/util/AddressSetStorageInterface.sol";

import "../../interface/node/RocketNodeManagerInterface.sol";

import "../../interface/network/RocketNetworkPricesInterface.sol";

import "../../interface/dao/protocol/settings/RocketDAOProtocolSettingsMinipoolInterface.sol";

code/contracts/contract/minipool/RocketMinipoolFactory.sol:L8-L10

import "../../types/MinipoolStatus.sol”;
import "../../types/MinipoolDeposit.sol";
import "../../interface/dao/node/RocketDAONodeTrustedInterface.sol"”;

https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6
https://github.com/rocket-pool/rocketpool/tree/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

code/contracts/contract/minipool/RocketMinipoolBase.sol:L7-L8

./../types/MinipoolDeposit.sol";
./../types/MinipoolStatus.sol"”;

import
import

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L13-L14

./../interface/network/RocketNetworkPricesInterface.sol";
./../interface/node/RocketNodeManagerInterface.sol";

import
import

code/contracts/contract/node/RocketNodeManager.sol:L13

import ./../interface/rewards/claims/RocketClaimNodeInterface.sol";

code/contracts/contract/rewards/RocketClaimDAO.sol:L7

import ./../interface/rewards/RocketRewardsPoolInterface.sol";

Duplicate Import:

code/contracts/contract/minipool/RocketMinipoolFactory.sol:L19-L20

./../interface/dao/protocol/settings/RocketDAOProtocolSettingsNodeInterface.sol";
./../interface/dao/protocol/settings/RocketDAOProtocolSettingsNodeInterface.sol";

import
import

The above list is exemplary, and there are likely more occurrences across the code base.

Recommendation

We recommend checking all imports and removing unused/unreferenced and unnecessary imports.

5.18 RocketMinipool - Inconsistent access control modifier declaration onlyMinipoolOwner gmm

Acknowledged

Resolution

Acknowledged by the client. Not addressed within rocket-pool/rocketpool@ 77d7cca

Agreed. This would change a lot of contracts just for a minor improvement in readbility.

Description

The access control modifier onlyminipoolowner should be renamed to onlyMinipoolownerorWithdrawaladdress to be consistent with the
actual check permitting the owner or the withdrawal address to interact with the function. This would also be consistent with
other declarations in the codebase.

Example

The onlyMinipoolOwner modifier in RocketMinipoolBase is the same as onlyMinipoolOwnerOrWithdrawalAddress in other modules.

code/contracts/contract/minipool/RocketMinipoolBase.sol:L31-L37

/// @dev Only allow access from the owning node address
modifier onlyMinipoolOwner() {
// Only the node operator can upgrade
address withdrawalAddress = rocketStorage.getNodeWithdrawalAddress(nodeAddress);
require(msg.sender == nodeAddress || msg.sender == withdrawalAddress, "Only the node operator can access this method");

-

code/contracts/contract/old/minipool/RocketMinipoolOld.sol:L21-L27

// Only allow access from the owning node address
modifier onlyMinipoolOwner() {
// Only the node operator can upgrade
address withdrawalAddress = rocketStorage.getNodeWithdrawalAddress(nodeAddress);
require(msg.sender == nodeAddress || msg.sender == withdrawalAddress, "Only the node operator can access this method");

-

Other declarations:

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L97-L107

https://github.com/rocket-pool/rocketpool/commit/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

/// @dev Only allow access from the owning node address
modifier onlyMinipoolOwner(address _nodeAddress) {
require(_nodeAddress == nodeAddress, "Invalid minipool owner");

-

/// @dev Only allow access from the owning node address or their withdrawal address
modifier onlyMinipoolOwnerOrWithdrawalAddress(address _nodeAddress) {
require(_nodeAddress == nodeAddress || _nodeAddress == rocketStorage.getNodeWithdrawalAddress(nodeAddress),

-

code/contracts/contract/old/minipool/RocketMinipoolDelegateOld.sol:L82-L92

// Only allow access from the owning node address
modifier onlyMinipoolOwner(address _nodeAddress) {
require(_nodeAddress == nodeAddress, "Invalid minipool owner");

-

// Only allow access from the owning node address or their withdrawal address
modifier onlyMinipoolOwnerOrWithdrawalAddress(address _nodeAddress) {
require(_nodeAddress == nodeAddress || _nodeAddress == rocketStorage.getNodeWithdrawalAddress(nodeAddress),

Recommendation

We recommend renaming RocketMinipoolBase.onlyMinipoolOwner tO RocketMinipoolBase.onlyMinipoolOwnerOrWithdrawalAddress .

5.19 RocketDAO*Settings - settingNameSpace shouldbe immutable m® Acknowledged

"Invalid minipoc

"Invalid minipoc

Resolution

Acknowledged by the client. Not addressed within rocket-pool/rocketpool@ 77d7cca

Acknowledged. We can fix this as we upgrade the related contracts.

Description

The settingNameSpace in the abstract contract RocketDAONodeTrustedsettings iS only set on contract deployment. Hence, the fields

should be declared immutable to make clear that the settings namespace cannot change after construction.

Examples

® RocketDAONodeTrustedSettings

code/contracts/contract/dao/node/settings/RocketDAONodeTrustedSettings.sol:L13-L16

// The namespace for a particular group of settings
bytes32 settingNameSpace;

code/contracts/contract/dao/node/settings/RocketDAONodeTrustedSettings.sol:L25-L30

// Construct

constructor(RocketStorageInterface _rocketStorageAddress, string memory _settingNameSpace) RocketBase(_rocketStorageAddress) {

// Apply the setting namespace
settingNameSpace = keccak256(abi.encodePacked("dao.trustednodes.setting."”, _settingNameSpace));

® RocketDAOProtocolSettings

code/contracts/contract/dao/protocol/settings/RocketDAOProtocolSettings.sol:L13-L14

// The namespace for a particular group of settings
bytes32 settingNameSpace;

code/contracts/contract/dao/protocol/settings/RocketDAOProtocolSettings.sol:L25-L29

// Construct

constructor (RocketStorageInterface _rocketStorageAddress, string memory _settingNameSpace) RocketBase(_rocketStorageAddress) {

// Apply the setting namespace
settingNameSpace = keccak256(abi.encodePacked("dao.protocol.setting.", _settingNameSpace));

code/contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsAuction.sol:L13-L15

constructor(RocketStorageInterface _rocketStorageAddress) RocketDAOProtocolSettings(_rocketStorageAddress, "auction") {

// Set version
version = 1;

https://github.com/rocket-pool/rocketpool/commit/77d7cca65b7c0557cfda078a4fc45f9ac0cc6cc6

Recommendation

We recommend using the immutable annotation in Solidity (see Immutable).

5.20 Inefficiencies with the onlyMinipoolOwner modifier acnowicdged

Resolution

Acknowledged by the client. No further actions.

Correct. This change would change every single contract we have and so the benefit does not outweigh the
change.

Description

If a withdrawal address has not been set (or has been zeroed out), rocketsStorage.getNodeWithdrawalAddress(nodeAddress) returns
nodeAddress . This outcome leads to the modifier checking the same address twice (

msg.sender == nodeAddress || msg.sender == nodeAddress):

code/contracts/contract/minipool/RocketMinipoolBase.sol:L31-L37

modifier onlyMinipoolOwner() {

address withdrawalAddress = rocketStorage.getNodeWithdrawalAddress(nodeAddress);
require(msg.sender == nodeAddress || msg.sender == withdrawalAddress, "Only the node operator can access this method");

code/contracts/contract/RocketStorage.sol:L103-L111

function getNodeWithdrawalAddress(address _nodeAddress) public override view returns (address) {

address withdrawalAddress = withdrawalAddresses[_nodeAddress];
if (withdrawalAddress == address(0)) {
return _nodeAddress;

}

return withdrawalAddress;

5.21 RocketNodeDeposit - Duplicate check to avoid revert (v

Resolution

Fixed with rocket-pool/rocketpool@ sab7af1 by introducing a new method maybeassignbeposits() that does not revert by default
but returns a boolean instead. This way, RocketNodeDeposit directly call the maybeassignbeposits() function, avoiding the duplicate
check.

This finding does not present a security-related problem in the code base, which is why we downgrade its severity to
informational. However, we opted to keep this recommendation present in the report since it underlines a form of technical
debt where old functionality is wrapped by new functionality using a workaround.

Description

When receiving and subsequently assigning deposits, the RocketNodeDeposit contract’s assignbeposits function calls
RocketDAOProtocolSettingsDeposit.getAssignDepositsEnabled and skips the assignment of funds. This is done because the
RocketDepositPool.assignDeposits function reverts if the setting is disabled:

code/contracts/contract/deposit/RocketDepositPool.sol:L207-L212

function assignDeposits() override external onlyThislLatestContract {
RocketDAOProtocolSettingsDepositInterface rocketDAOProtocolSettingsDeposit = RocketDAOProtocolSettingsDepositInterface(getCc

require(_assignDeposits(rocketDAOProtocolSettingsDeposit), "Deposit assignments are currently disabled");

However, the underlying _assignbeposits function already performs a check for the setting and returns prematurely to avoid
assignment.

code/contracts/contract/deposit/RocketDepositPool.sol:L217-L219

if (!_rocketDAOProtocolSettingsDeposit.getAssignDepositsEnabled()) {
return false;

https://solidity.readthedocs.io/en/latest/contracts.html#immutable
https://github.com/rocket-pool/rocketpool/commit/3ab7af12d4e1e4e82282fd4211ace74afaa1c6d3

The rocketDAOProtocolSettingsDeposit.getAssignDepositsEnabled() Setting is checked twice. The first occurrence is in
RocketNodeDeposit.assignDeposits and the second one in the same flow is contained in RocketDepositPool._assignDeposits . The second
check is performed in a reverting fashion, thus requiring the top-level check in the RrocketNodebeposit contract to preemptively
fetch and check the setting before continuing.

Recommendation

Since Rocketpool v1.2 already aims to perform an upgrade on the RocketDepositPool contract, we do recommend adding a
separate, non-reverting version of the RocketbepositPool.assignbeposits function to the code base and removing the redundant
preemptive check in RocketNodeDeposit.assignDeposits . This will improve readability and maintainability of future versions of the code,
and save gas cost on deposit assignment operations.

5.22 Inconsistent Coding Style acinowiedged

Resolution

The client provided the following statement:

Acknolwedge your recommendation but we are dealing with an existing deployed codebase and if we change
codestyle on only the contracts we update we will end up with a codebase with different code styles which is
worse than one that is internally consistent but not consistent with best practice.

Description

Deviations from the Solidity Style Guide were identified throughout the codebase. Considering how much value a consistent
coding style adds to the project’s readability, enforcing a standard coding style with the help of linter tools is recommended.

Inconsistent Function naming scheme for external and internal interfaces

Throughout the codebase, private/internal functions are generally prefixed with an underscore (_<name>). This allows for an easy
way to see if an external party can interact with a function without having to scan the declaration line for the corresponding
visibility keywords. However, this naming scheme is not enforced consistently. Many internal function names are
indistinguishable from external function names. It is therefore highly recommended to implement a consistent naming scheme
and prefix internal functions with an underscore (_<name>).

code/contracts/contract/node/RocketNodeDeposit.sol:L268-L283

/// @dev Reverts if vacant minipools are not enabled
function checkVacantMinipoolsEnabled() private view {
// Get contracts
RocketDAOProtocolSettingsNodeInterface rocketDAOProtocolSettingsNode = RocketDAOProtocolSettingsNodeInterface(getContractAdc
// Check node settings
require(rocketDAOProtocolSettingsNode.getVacantMinipoolsEnabled(), "Vacant minipools are currently disabled");

/// @dev Executes an assignDeposits call on the deposit pool
function assignDeposits() private {
RocketDAOProtocolSettingsDepositInterface rocketDAOProtocolSettingsDeposit = RocketDAOProtocolSettingsDepositInterface(getCc
if (rocketDAOProtocolSettingsDeposit.getAssignDepositsEnabled()) {
RocketDepositPoolInterface rocketDepositPool = RocketDepositPoolInterface(getContractAddress("rocketDepositPool"));
rocketDepositPool.assignDeposits();

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L339-L345

/// @dev Stakes the balance of this minipool into the deposit contract to set withdrawal credentials to this contract
/// @param _validatorSignature A signature over the deposit message object
/// @param _depositDataRoot The hash tree root of the deposit data object
function preStake(bytes calldata _validatorPubkey, bytes calldata _validatorSignature, bytes32 _depositDataRoot) internal {
// Load contracts
DepositInterface casperDeposit = DepositInterface(getContractAddress("casperDeposit"));
RocketMinipoolManagerInterface rocketMinipoolManager = RocketMinipoolManagerInterface(getContractAddress("rocketMinipoolManz

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L651-L654

/// @dev Distributes the current contract balance based on capital ratio and node fee
function distributeSkimmedRewards() internal {
uint256 rewards = address(this).balance.sub(nodeRefundBalance);
uint256 nodeShare = calculateNodeRewards(nodeDepositBalance, getUserDepositBalance(), rewards);

code/contracts/contract/minipool/RocketMinipoolDelegate.sol:L661-L663

/// @dev Set the minipool's current status
/// @param _status The new status
function setStatus(MinipoolStatus _status) private {

code/contracts/contract/node/RocketNodeDeposit.sol:L202-L206

https://docs.soliditylang.org/en/latest/style-guide.html

/// @dev Adds a minipool to the queue

function enqueueMinipool(address _minipoolAddress) private {

// Add minipool to queue

RocketMinipoolQueueInterface(getContractAddress("rocketMinipoolQueue")).enqueueMinipool(_minipoolAddress);

code/contracts/contract/node/RocketNodeDeposit.sol:L208-L213

/// @dev Reverts if node operator has not initialised their fee distributor
function checkDistributorInitialised() private view {
// Check node has initialised their fee distributor

RocketNodeManagerInterface rocketNodeManager = RocketNodeManagerInterface(getContractAddress("rocketNodeManager"));

require(rocketNodeManager.getFeeDistributorInitialised(msg.sender), "Fee distributor not initialised");

code/contracts/contract/node/RocketNodeDeposit.sol:L215-L218

/// @dev Creates a minipool and returns an instance of it
/// @param _salt The salt used to determine the minipools address
/// @param _expectedMinipoolAddress The expected minipool address. Reverts if not correct

function createMinipool(uint256 _salt, address _expectedMinipoolAddress) private returns (RocketMinipoolInterface) {

code/contracts/contract/auction/RocketAuctionManager.sol:L58-L60

function setLotCount(uint256 _amount) private {
setUint(keccak256("auction.lots.count"), _amount);

Appendix 1 - Files in Scope

This audit covered the following files:

SHA-1 Hash
€0d054c08e868a73e78f29¢c5b80b6b2d9d31ac43
edB7e8bd9a7309d3755ed76bce7c04e48628b9de
ef40c3420e4492bbd405d239¢63b2dbb23d167e3
493234d4c3fc24d598067d60e746f1257bf4bb5f
eb50e6e9cc2eb94cd01288521f9bc73890fc483¢c
e73ed34c2c3baa463dacB947b70dbb1e5bcff99d
77785b4a3196f4736e574ea5e87b018d3d3e7824
8749d09f3e9e8019676fd9d48622a850d3d3f71b
cd1c38eb32ab318934d94b40531e32f1ac58261e
2d7fcb81de5fb404c26880d8015535¢c5423b8651
93d3616ebaa9053f8defdebf8568ebcdc7d6b7b6
0242996368cabfed713ccecch2313f2a0f6fe586
bobda868dad3c7c43ad740b24a37e2cb4f52994f
e17c6b07288ea458d101cd54bd2a230d6718722d
cdf2a398e2ff8fb6a55ec7efd5c6c316e34ae4966
9b81afb407809332c2a3f605317cfadebf3289ch
5ce805aba1d1457a80b9c9d3b49fa2753771aeee
bfb92f4e76b81acbed1c09e405a39394b93ec398
385c9f5e2eb6eeac513c923e163e531fc18d89chc
3072edef2f2e1f58be33b27d6dc36071529e1156
ed47d92656192c5b09a84a343bcB71aa76d20bd2
a4876b026c0e03777e1121616856b57a0fe20f0c
154ae3907234b7cadbd35841f8cha3582ff4e96¢
cc57265a125d582c3b4e4e50f2ea3f2427df8133
0f8e23d4ad751551638956a5e4673723ab466634
2511ff09533cc83a7daf112121ed20dad88ee8a0
6ca81e7796640015458083001b068fe2aa9cd56f
ee9dcdc3cfch1375bd7¢c0a18e602b603118baaba
9eb042d1c047dd258ab3785458e14e34b93bc82e
75e11937311100a134d055¢c6d683b286825b88b5

76dd45aeebdade408cf3df12c3bbeaadd60al31d44

File
contracts/contract/node/RocketNodeDistributorStoragelLayout.sol
contracts/contract/node/RocketNodeDistributorFactory.sol
contracts/contract/node/RocketNodeDistributor.sol
contracts/contract/node/RocketNodeStaking.sol
contracts/contract/node/RocketNodeManager.sol
contracts/contract/node/RocketNodeDeposit.sol
contracts/contract/node/RocketNodeDistributorDelegate.sol
contracts/contract/upgrade/RocketUpgradeOneDotTwo.sol
contracts/contract/rewards/RocketMerkleDistributorMainnet.sol
contracts/contract/rewards/RocketRewardsPool.sol
contracts/contract/rewards/RocketSmoothingPool.sol
contracts/contract/rewards/RocketClaimDAO.sol
contracts/contract/RocketBase.sol
contracts/contract/network/RocketNetworkBalances.sol
contracts/contract/network/RocketNetworkFees.sol
contracts/contract/network/RocketNetworkPenalties.sol
contracts/contract/network/RocketNetworkPrices.sol
contracts/contract/RocketVault.sol
contracts/contract/dao/node/RocketDAONodeTrustedActions.sol
contracts/contract/dao/node/settings/RocketDAONodeTrustedSettingsRewards.sol
contracts/contract/dao/node/settings/RocketDAONodeTrustedSettingsProposals.sol
contracts/contract/dao/node/settings/RocketDAONodeTrustedSettingsMinipool.sol
contracts/contract/dao/node/settings/RocketDAONodeTrustedSettingsMembers.sol
contracts/contract/dao/node/settings/RocketDAONodeTrustedSettings.sol
contracts/contract/dao/node/RocketDAONodeTrusted.sol
contracts/contract/dao/node/RocketDAONodeTrustedUpgrade.sol
contracts/contract/dao/node/RocketDAONodeTrustedProposals.sol
contracts/contract/dao/protocol/RocketDAOProtocolProposals.sol
contracts/contract/dao/protocol/RocketDAOProtocol.sol
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsRewards.sol

contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsInflation.sol

SHA-1 Hash
05ef6bb54e501a6bdd3718a387d92fd6eBca570a
d8d177fbeb398efed9ae2cf46511e5614ab96872
bfba6f800c374736cf64fa842a6e5001d28635eb
1c7ddd122b145bd100d5e25ce8486e69bb19d4a8
820f43feal5eff788f5f85896chb52ee2d8810775
9145f779188723787a5fe20a3228058e4fe9186a
€692c30¢c4914517da9f87e08b2dccd7a9d4134b9b
c6b7566a67ed27afcbb4e3b77ca1877167fe94d7
597f7b6f0eb5b05cfbob74f4af750e2afad7f11c
bf5063ce2a597cc582c255f39e9ecfb6a5362ffc2
5692e51485510211f7a529190338e0276f2cc7343
872b8563fef2dbe77a3301a205ff3¢c39182cf1ch
2fale7d7e69703ae18759bf4afa82a6744206c01b
f393a16e1f674ade2ef9f1ech86b930d18ae8d45
cb683564f47dac2a13ba87622bf4f69d264f1cc6
3df5f46799f97b7a383bc3cc8661adfe5aaad13a
08b9c9d65188d4931b24865c86795602a48247a2
a12e8f5594c70b9841097836dc3954ddb97bf02e
9fbadfcala9d@i2bafbf6fff127fe38d589826d8
d4c47c746ef9fbdee7bef9cab11ccc8811478ed2
fa66f01a46cc020e8195ebe8da572ee941a82df8
538e2b9b6b13d1479226a2fe9cdd8dc2495b2514
5883ae7125d52f612257e051330089719a783343
€99e576cbdfd38d8d6e3fbcdd5abd63362f5cc5e
4163¢f93214¢71d46078ee8551863770069cc360
18be22f61a864272b7927d8015404a0a2cc7705¢

c63733bf0da9f7a2750abc17¢c0399fd578c2f74e

File
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsDeposit.sol
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsNetwork.sol
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettings.sol
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsAuction.sol
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsMinipool.sol
contracts/contract/dao/protocol/settings/RocketDAOProtocolSettingsNode.sol
contracts/contract/dao/protocol/RocketDAOProtocolActions.sol
contracts/contract/dao/RocketDAOProposal.sol
contracts/contract/helper/PenaltyTest.sol
contracts/contract/helper/RevertOnTransfer.sol
contracts/contract/minipool/RocketMinipoolBondReducer.sol
contracts/contract/minipool/RocketMinipoolManager.sol
contracts/contract/minipool/RocketMinipoolQueue.sol
contracts/contract/minipool/RocketMinipoolStoragelayout.sol
contracts/contract/minipool/RocketMinipoolBase.sol
contracts/contract/minipool/RocketMinipoolStatus.sol
contracts/contract/minipool/RocketMinipoolPenalty.sol
contracts/contract/minipool/RocketMinipoolDelegate.sol
contracts/contract/minipool/RocketMinipoolFactory.sol
contracts/contract/auction/RocketAuctionManager.sol
contracts/contract/util/AddressSetStorage.sol
contracts/contract/util/AddressQueueStorage.sol
contracts/contract/old/node/RocketNodeStaking0ld.sol
contracts/contract/old/node/RocketNodeDistributorDelegate0ld.sol
contracts/contract/old/node/RocketNodeManagerOld.sol
contracts/contract/old/node/RocketNodeDepositOld.sol

contracts/contract/old/network/RocketNetworkPrices0ld.sol

73249ffc350985908b54b498b5564d52613d7788 contracts/contract/old/dao/node/settings/RocketDAONodeTrustedSettingsMinipoolOld.sol

d52198de4d315e7e5f9277e3a62175401f098bb1b contracts/contract/old/dao/protocol/settings/RocketDAOProtocolSettingsDepositOld.sol

22596ea8ae13053a6b711f25e0524c92694daf837 contracts/contract/old/dao/protocol/settings/RocketDAOProtocolSettingsNode0Old.sol

c824fbh92cf1dd25326¢cf9f82048ed1cecadd86df contracts/contract/old/dao/protocol/settings/RocketDAOProtocolSettingsMinipool0ld.sol

731eed38ef605e4ab3f7e1b7f2885e3ebf5a55¢c8 contracts/contract/old/minipool/RocketMinipool0ld.sol

9be158bbbfa5a787847468b92067f24d%eab1c6e contracts/contract/old/minipool/RocketMinipoolManagerOld.sol

b56e74b5e1fd7692e71a2b33c77f7db6cbB9bea3l contracts/contract/old/minipool/RocketMinipoolFactory0ld.sol

3b517c55a54b5234c8e5c5a5497b3ead4020dd8b contracts/contract/old/minipool/RocketMinipoolQueue0ld.sol

9cal1d01c6c8e3¢c41573f273¢c9c9545d3866aae4 contracts/contract/old/minipool/RocketMinipoolDelegate0ld.sol

bdc63241398006c351bb70a0e7f47d5586¢c95a56¢€ contracts/contract/old/minipool/RocketMinipoolStoragelLayout0Old.sol

200d56ccab76cc739055597e0af551f4a09add1c contracts/contract/old/deposit/RocketDepositPo0l01d.sol

78b524187aecB479e15178ded2d4f183¢c7414e02 contracts/contract/old/RocketNetworkFees0ld.sol

04cdfabBf47dd76a900ad25ef7a19957900807chd contracts/contract/deposit/RocketDepositPool.sol

6d556731d640f8ff78f04b3b2ba54ccc52b9791a contracts/contract/token/RocketTokenRPL.sol

1fa2dd47d3d999602b866db678db083d700e0799 contracts/contract/token/temp/RocketTokenDummyRPL .sol

b9cea77bf1178201cc8e4b839016165d73740137 contracts/contract/token/RocketTokenRETH.sol

0e17a838a7ae3a0d117bdb29dedf77b16bce3736 contracts/contract/RocketStorage.sol

2b123f1a01b8fc7664336af46038d5db2f0117f3 contracts/types/MinipoolDetails.sol

5bd86e815d047d6aab8b091aBb783f1cd10dede7 contracts/types/MinipoolDeposit.sol

31e943e327367421baf300e9b820823fafb94311 contracts/types/NodeDetails.sol

131fabe8d6efbed51f9c7f24ed88356c03315c9f contracts/types/SettingType.sol

555564772a803a032929cb3d50091999170ec93c contracts/types/RewardSubmission.sol

d57614fab9b875413a5afa2fa28837f005af067a contracts/types/MinipoolStatus.sol

93d2dcB4d17a72fcd9f5b8a736b621524ee87106 contracts/types/old/NodeDetails0ld.sol
cfff9e6406d398e3fe838d001ffd91cdeffadb88 contracts/interface/node/RocketNodeDistributorFactoryInterface.sol

dfde8dac4ab8130313787b8ce9%9eab628773a8428d contracts/interface/node/RocketNodeStakingInterface.sol

SHA-1 Hash
5c9chb11249756bfeac769deaf@c8533e5d381ca2
c@7bc1a65cc9a9bebB6eb311d5345a7040bfb778
2a993cfb99c99df89628c77e9edefefe55d1483a
f97a5ced28a49d32180441d7379457896f6bb825
808f2c9875eb438edf944ba564adc5ea31213b44
f9b774da2263be3833ach225b2ed1a57b06d4a46
8eb877d619690538c64b84c45¢c15077d3439501b
5943539f2bae9ee3b4cd49cfd1bch9e3cB833¢c094
b2e6aabaccf88e3ac9e3aB846e7df41ad64a691de
1cc38d548b5051fef88fb1fb8b2c5715¢cfd93048
f1cB7b7eff6755965f2f6d8d04f5f8a160e73fbe
66a93db7577f75799463201e116bc98b39753e66
23a03945ca61fde02619754dab79738ebc699cde
de391100daede5612fb913f904b64c84e5b5564a
05bBdc75a1c8871ec3ff17c9a68f68335e344786

Te2fcfeba5a1cbh02520328d0cbb82640f51a5440

File
contracts/interface/node/RocketNodeManagerInterface.sol
contracts/interface/node/RocketNodeDepositInterface.sol
contracts/interface/node/RocketNodeDistributorInterface.sol
contracts/interface/rewards/claims/RocketClaimDAOInterface.sol
contracts/interface/rewards/claims/RocketClaimNodeInterface.sol
contracts/interface/rewards/claims/RocketClaimTrustedNodeInterface.sol
contracts/interface/rewards/RocketSmoothingPoolInterface.sol
contracts/interface/rewards/RocketRewardsRelayInterface.sol
contracts/interface/rewards/RocketRewardsPoolInterface.sol
contracts/interface/RocketStorageInterface.sol
contracts/interface/network/RocketNetworkBalancesInterface.sol
contracts/interface/network/RocketNetworkFeesInterface.sol
contracts/interface/network/RocketNetworkPricesInterface.sol
contracts/interface/network/RocketNetworkPenaltiesInterface.sol
contracts/interface/dao/node/RocketDAONodeTrustedInterface.sol

contracts/interface/dao/node/settings/RocketDAONodeTrustedSettingsInterface.sol

452c28b2b5db2b487013ae27a4dafd3826¢cc7aad contracts/interface/dao/node/settings/RocketDAONodeTrustedSettingsMembersInterface.sol

8bd46a6e1f6988a332f6c1c6921ee566b3128db2 contracts/interface/dao/node/settings/RocketDAONodeTrustedSettingsRewardsInterface.sol

d74e01d9b27e2e544c498d80a43a4ca9eb559f75 contracts/interface/dao/node/settings/RocketDAONodeTrustedSettingsMinipoolInterface.sol

e51bda8eaf5d@adbed8ce748d50bf394194020a3 contracts/interface/dao/node/settings/RocketDAONodeTrustedSettingsProposalsInterface.sol

2b403337eb717c363a8c0d43f734e8bb2a52a428 contracts/interface/dao/node/RocketDAONodeTrustedProposalsInterface.sol

a060b82998383560e546e41f3d979648db3618b35 contracts/interface/dao/node/RocketDAONodeTrustedActionsInterface.sol

12bf1b71506bcaa85¢c905796e1a45bf32cf4cd20 contracts/interface/dao/node/RocketDAONodeTrustedUpgradeInterface.sol

9611ef6727bd4660835d3d63a20b870d83091c57 contracts/interface/dao/RocketDAOProposalInterface.sol

954bdcOc88c5a2cc1f48e0d36094497573d8316¢ contracts/interface/dao/protocol/RocketDAOProtocolProposalsInterface.sol

de87bf180b6fb7df2ccd6235e5d65d41f5adeedd contracts/interface/dao/protocol/RocketDAOProtocolActionsInterface.sol

1763f669eed40014cd6b9a5b6450ef8933d5b93d contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsNodeInterface.sol

71bb735546a78b0d5655362900099b6a48beB9b2 contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsDepositInterface.sol

239d0e9b16826d507e5969b576f0Be9aeb62c4c19b contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsNetworkInterface.sol

d7f3796a17e351037¢c5b26d5cce8813732135478 contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsInflationInterface.sol

f5a68583e26chcecaae578e05a193b629a675971 contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsAuctionInterface.sol

c02d578e41414d241ab10b082cec3fa72e61ea55 contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsRewardsInterface.sol

d5fb57ee5e68482d1ef976d3189¢c873d8b19¢c317 contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsMinipoolInterface.sol

af57eb613c63ce3d47f812c96a42d024430961ac

c774f46ecab74eff940a8879986495871486¢ce29

9cced1a86b7063603337ea26351a5eab6172eeb4

5a21b810b85ec99f4449580d1cb30810829c3132

9612f16185357104a28835121f9c276ac41c3acO

c745418bc5474382369bd03313abb378852a855d

a5ab18a608c884c09ed8646fa637b154ed475d7f

8b7e3d06€9a221b769359bf43d4a8bf7147060b21

54d241f1e4bf58715fcBe3c57e8689%9aa2fcfda3b

b4384136cdBb9aBada9fbbf4677e93508aa2102d

97be385ba8163a4d6e090162d265fc524cadb4ed

5cbb81c3088e73dddd70e14625df8692c0992ab7

896dacb8f86aadch1bcfeld4fab102b10d2bc4fa

1a0dc382251edBc61e264a618ddad690f9c1038¢c

e15b25e42ced34804a3bb9d8b703f49ac4abcd9o

a3b41c4e7b1a364cfo6b8a3ef212d7711f8d5b7d

393060945891e037d826c9eb68245abB32c8fach

199b624f7e297770a57f9194329d612c88450912

443a05bb1d24b47f917fd82ccab11edf26275532

fbbB7f75c8cc09480dca7d2d77f31f393a30768c

contracts/interface/dao/protocol/settings/RocketDAOProtocolSettingsInterface.sol

contracts/interface/dao/protocol/RocketDAOProtocolInterface.sol

contracts/interface/minipool/RocketMinipoolStatusInterface.sol

contracts/interface/minipool/RocketMinipoolInterface.sol

contracts/interface/minipool/RocketMinipoolBondReducerInterface.sol

contracts/interface/minipool/RocketMinipoolManagerInterface.sol

contracts/interface/minipool/RocketMinipoolPenaltyInterface.sol

contracts/interface/minipool/RocketMinipoolFactoryInterface.sol

contracts/interface/minipool/RocketMinipoolQueueInterface.sol

contracts/interface/RocketVaultInterface.sol

contracts/interface/auction/RocketAuctionManagerInterface.sol

contracts/interface/util/AddressQueueStorageInterface.sol

contracts/interface/util/AddressSetStorageInterface.sol

contracts/interface/RocketVaultWithdrawerInterface.sol

contracts/interface/old/RocketNodeDepositInterface0ld.sol

contracts/interface/old/RocketNodeManagerInterface0ld.sol

contracts/interface/old/RocketDAOProtocolSettingsDepositInterface0ld.sol

contracts/interface/old/RocketDAOProtocolSettingsMinipoolInterface0ld.sol

contracts/interface/old/RocketNodeStakingInterface0ld.sol

contracts/interface/old/RocketNetworkPricesInterfaceOld.sol

SHA-1 Hash File

641fec69187057f8abb61af1cd319d16691e31e7 contracts/interface/old/RocketMinipoolQueueInterface0ld.sol
06dbe261b1e5845f8372dcf38960586671536166 contracts/interface/old/RocketMinipoolManagerInterface0ld.sol
8474c41be9dab3a43932cf664549e80cd328936b contracts/interface/old/RocketDAOProtocolSettingsNodeInterface0ld.sol
c482301168243ce9fb2fb30437e4ef80c76150cH contracts/interface/old/RocketMinipoolFactoryInterface0ld.sol
c91cd7e324ebb5816¢c5777a5439d97ff5facbfbb contracts/interface/old/RocketMinipoolInterfaceOld.sol
9b8Baffcc3e20f394a8e8d6a51e2b50f7c2e04a3 contracts/interface/old/RocketDAONodeTrustedSettingsMinipoolInterface0ld.sol
0fB76ba9160dad4e99fce2f74dB5de49baddf78d7 contracts/interface/old/RocketDepositPoolInterface0ld.sol
b6869515a10a2ac8092bef1769a6f1e34b967715 contracts/interface/old/RocketNodeDistributorInterface0ld.sol
ec56e4455efe3514697104258c32df1313372469 contracts/interface/deposit/RocketDepositPoolInterface.sol
af4be5e36106b15b9670e1af4b3976b45885f85d4 contracts/interface/token/RocketTokenRPLInterface.sol
5527b31945c2650b7efcchf44eb5f781f3a2e4f7 contracts/interface/token/RocketTokenRETHInterface.sol
2705faf4605281dfeee78c56847d09ch3100bf77 contracts/interface/casper/DepositInterface.sol

Appendix 2 - Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites' owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

POWERED BY ONSENSYS

https://consensys.net/

