@Diligence

AUDITS

FUZZING SCRIBBLE ABOUT

Geode Liquid Staking

1 Executive Summary

2 Scope

2.1 Objectives

3 System Overview

3.1 Actors

4 Findings

4.1 Node Operators Can Stake
Validators That Were Not
Proposed by Them.

4.2 Cannot Blame Operator for
Proposed Validator 'Medium

4.3 Validators Array Length Has to
Be Updated When the Validator Is
Alienated. 'Medium

4.4 A Potential Controller Update

Issue. (VLED

4.5 The Price Change Limit Could
Prevent the Setting of the Correct

Price. (U3

4.6 Potential for a Cross-Site-
Scripting When Creating a Pool.

Appendix 1- Disclosure

Date May 2023

Auditors Chingiz Mardanov, Sergii
Kravchenko

1 Executive Summary

This report presents the results of our engagement with Geode Finance to review their Liquid Staking Library contracts.

The review was conducted over two weeks, from May, 8th to May, 19th, by Chingiz Mardanov and Sergii Kravcheko. A total of
20 person-days were spent.

This represents the second review of the protocol, following significant changes made to the code subsequent to the previous
review. We are pleased to note substantial enhancements in code size, quality, and business logic, resulting in improved
comprehensibility and audibility of the codebase. However, it is important to acknowledge that a significant amount of code
remains unimplemented, and the majority of contracts lie outside the current scope. Due to these factors, alongside the major
changes in the codebase, it proved impracticable to fully isolate the code and conduct a thorough review in an isolated manner.
So there may still be issues related to the details of unimplemented code or the code out of scope.

2 Scope

Our review focused on the commit hash 4a4debscdae2cebi2fccansdisadc948e6bfo830 . Due to the complexity of the system and the time
restrictions, only two contnracts are in scope:

File SHA-1 hash
OracleExtensionLib.sol 30eacd8702f566e06b135c6bcldf9ad6ae4df8dd4

StakeModulelLib.sol 20b6a04e6blcabebfdf9c76d3f3416fcdecOfe9b

2.1 Objectives
Together with the Geode Finance team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 System Overview

The codebase represents a highly modular liquid staking protocol. We only reviewed two libraries that will both be used by the
StakingModule:

e StakeModulelLib - the library contains the code to manage and interact with the staking pools and operators:
o Node operators can be initialized and managed by the controllers and maintainers.

o Node operators can create validators and stake funds from the pool if they have enough allowance.
o Pools can be created and then managed by anyone.

o Pools can manage the allowance of the node operators.

o Users can deposit funds to the pool.

e OracleExtensionLib - the library contains the code the centralized Oracle actor calls. The main actions that are done through
this library:
o Updating balances and prices of the pool shares.

o Verifying that the validators are initiated with the correct credentials.

o Imprisoning malicious or faulty node operators.

3.1 Actors
The relevant actors are listed below with their respective abilities:

* Node Operators - actors that are running validators with staked funds borrowed from pools. Represented by controller and
maintainer addresses.

e Pools - actors that are creating and managing liquidity pools needed to gather funds for staking. Represented by controller
and maintainer addresses.

e Depositors - any user that deposits to the pools and holds g¢etH tokens (shares of the pools).

e Oracle - a centralized entity controlled by Geode. Maintaining correct geth token prices and banning malicious node
operators.

4 Findings

https://github.com/Geodefi/Portal-Eth/tree/4a4d0b5cd402ceb12fcca03d15a4c948e6bf0830
https://github.com/Geodefi/Portal-Eth/blob/audit-ready/contracts/Portal/modules/StakeModule/libs/OracleExtensionLib.sol
https://github.com/Geodefi/Portal-Eth/blob/audit-ready/contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

Each issue has an assigned severity:

e ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

41 Node Operators Can Stake Validators That Were Not Proposed by Them. ¢zm
In GeodeFi system node operators are meant to add the new validators in two steps:

e Proposal step where 1 ETH of the pre-stake deposit is committed.

e Stake step, where the 1 ETH pre-stake is reimbursed to the node operator, and the 32ETH user stake is sent to a validator.

The issue itself stems from the fact that node operators are allowed to stake the validators of the other node operators. In the
stake() function there is no check of the validator’s operatorzd against the operator performing the stake. Meaning that node
operator A can stake validators of node operator B.

contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol:L1478-L1558

function stake(
PooledStaking storage self,
DSML.IsolatedStorage storage DATASTORE,
uint256 operatorld,
bytes[] calldata pubkeys
) external {
_authenticate(DATASTORE, operatorId, false, true, [true, false]);

require(
(pubkeys.length > @) && (pubkeys.length <= DCL.MAX_DEPOSITS_PER_CALL),
"SML:1 - 50 validators"

)

{
uint256 _verificationIndex = self.VERIFICATION_INDEX;

for (uint256 j = 0; j < pubkeys.length;) {
require(
_canStake(self, pubkeys[j], _verificationIndex),
"SML:NOT all pubkeys are stakeable"

)

unchecked {
j +=1;
}

bytes32 activeValKey = DSML.getKey(operatorId, rks.activeValidators);

bytes32 proposedValKey = DSML.getKey(operatorId, rks.proposedValidators);

uint256 poolld = self.validators|[pubkeys[0]].poolId;

bytes memory withdrawalCredential = DATASTORE.readBytes(poolId, rks.withdrawalCredential);

uint256 lastIdChange = 0;
for (uint256 i = @; i < pubkeys.length;) {
uint256 newPoolId = self.validators[pubkeys[i]].poolId;
if (poolld != newPoolId) {
uint256 sincelastIdChange;

unchecked {
sincelLastIdChange = i - lastIdChange;

}

DATASTORE . subUint(poolId, rks.secured, (DCL.DEPOSIT_AMOUNT * (sincelLastIdChange)));
DATASTORE . subUint(poolId, proposedValKey, (sincelLastIdChange));
DATASTORE .addUint(poolId, activeValKey, (sincelLastIdChange));

lastIdChange = 1i;
poolId = newPoolId;
withdrawalCredential = DATASTORE.readBytes(poolIld, rks.withdrawalCredential);

DCL .depositValidator(
pubkeys[i],
withdrawalCredential,
self.validators[pubkeys[i]].signature31,
(DCL.DEPOSIT_AMOUNT - DCL.DEPOSIT_AMOUNT_PRESTAKE)

)
self.validators[pubkeys[i]].state = VALIDATOR_STATE.ACTIVE;

unchecked {
i+=1;

uint256 sincelLastIdChange;
unchecked {
sincelLastIdChange = pubkeys.length - lastIdChange;

}
if (sincelLastIdChange > 0) {

DATASTORE . subUint(poolId, rks.secured, DCL.DEPOSIT_AMOUNT * (sincelLastIdChange));
DATASTORE . subUint(poolId, proposedValKey, (sincelLastIdChange));
DATASTORE .addUint(poolId, activeValKey, (sincelLastIdChange));

}

_increaseWalletBalance (DATASTORE, operatorId, DCL.DEPOSIT_AMOUNT_PRESTAKE * pubkeys.length);

emit Stake(pubkeys);
}

This issue can later be escalated to a point where funds can be stolen. Consider the following case:

e The attacker creates 10 validators directly through the ETH2 deposit contract using himself as the withdrawal address.

e Attacker node operator proposes to add 10 validators and adds the 10ETH as pre-stake deposit. Since validators already exist
withdrawal credentials will remain those of the Attacker. As a result of those actions, we have inflated the number of
proposed validators the attacker has inside the Geode system.

o Attacker then takes the validator keys proposed by someone else and stakes them. Since there is no check described above
that is allowed. His proposed validators count will also decrease without a revert due to steps above.

e As a result of that step, attacker will receive the pre-stake of the operator that actually proposed those validators. The
attacker will immediately proceed to call decreasewaliet() to withdraw the funds.

e The attacker will then withdraw the pre-stake he deposited in the initial validators with faulty withdrawal credential.
This way an attacker could profit TOETH.

This can be prevented by making sure that validator’s operatorld is checked on the stake() function call.

4.2 Cannot Blame Operator for Proposed Validator wedium
In the current code, anyone can blame an operator who does not withdraw in time:

contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol:L931-L946

function blameOperator (
PooledStaking storage self,
DSML.IsolatedStorage storage DATASTORE,
bytes calldata pk
) external {
require(
self.validators[pk].state == VALIDATOR_STATE.ACTIVE,
"SML:validator is never activated"
¥
require(
block.timestamp > self.validators[pk].createdAt + self.validators[pk].period,
"SML:validator is active"

)

_imprison(DATASTORE, self.validators|[pk].operatorId, pk);
}

There is one more scenario where the operator should be blamed. When a validator is in the proposep state, only the operator can
call the stake function to actually stake the rest of the funds. Before that, the funds of the pool will be locked under the

rks.secured Variable. So the malicious operator can lock up 31 ETH of the pool indefinitely by locking up only 1 ETH of the attacker.
There is currently no way to release these 31 ETH.

We recommend introducing a mechanism that allows one to blame the operator for not staking for a long time after it was
approved.

4.3 Validators Array Length Has to Be Updated When the Validator Is Alienated. wedium

In GeodeFi when the node operator creates a validator with incorrect withdrawal credentials or signatures the Oracle has the
ability to alienate this validator. In the process of alienation, the validator status is updated.

contracts/Portal/modules/StakeModule/libs/OracleExtensionLib.sol:L111-L136

function _alienateValidator(
SML .PooledStaking storage STAKE,
DSML.IsolatedStorage storage DATASTORE,
uint256 verificationIndex,
bytes calldata _pk
) internal {
require(STAKE.validators[_pk].index <= verificationIndex, "OEL:unexpected index");
require(
STAKE.validators[_pk].state == VALIDATOR_STATE.PROPOSED,
"OEL:NOT all pubkeys are pending"

);

uint256 operatorId = STAKE.validators[_pk].operatorId;
SML._imprison(DATASTORE, operatorId, _pk);

uint256 poolIld = STAKE.validators[_pk].poolld;
DATASTORE . subUint(poolId, rks.secured, DCL.DEPOSIT_AMOUNT) ;
DATASTORE .addUint(poolId, rks.surplus, DCL.DEPOSIT_AMOUNT);

DATASTORE .subUint(poolId, DSML.getKey(operatorId, rks.proposedValidators), 1);
DATASTORE .addUint(poolId, DSML.getKey(operatorId, rks.alienValidators), 1);

STAKE .validators[_pk].state = VALIDATOR_STATE.ALIENATED;

emit Alienated(_pk);

An additional thing that has to be done during the alienation process is that the validator’s count should be decreased in order for
the monopoly threshold to be calculated correctly. That is because the length of the validators array is used twice in the
OpeartorAllowance function:

contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol:L975

uint256 numOperatorValidators = DATASTORE.readUint(operatorId, rks.validators);

contracts/Portal/modules/StakeModule/libs/StakeModulelLib.sol:L988

uint256 numPoolValidators = DATASTORE.readUint(poolId, rks.validators);
Without the update of the array length, the monopoly threshold as well as the time when the fallback operator will be able to
participate is going to be computed incorrectly.

It could be beneficial to not refer to rks.validators in the operator allowance function and instead use the rks.proposedvalidators +
rks.alienatedvalidators + rks.activeValidators . This way allowance function can always rely on the most up to date data.

4.4 A Potential Controller Update Issue. cmm

We identified a potential issue in the code that is out of our current scope. In the ceodeModuleLib , there is a function that allows a
controller of any ID to update the controller address:

contracts/Portal/modules/GeodeModule/libs/GeodeModuleLib.sol:L299-L309

function changeIdCONTROLLER(
DSML.IsolatedStorage storage DATASTORE,
uint256 id,
address newCONTROLLER
) external onlyController (DATASTORE, id) {
require(newCONTROLLER '= address(@), "GML:CONTROLLER can not be zero");

DATASTORE .writeAddress(id, rks.CONTROLLER, newCONTROLLER);

emit ControllerChanged(id, newCONTROLLER);

It's becoming tricky with the upgradability mechanism. The current version of any package is stored in the following format:
DATASTORE . readAddress(versionId, rks. CONTROLLER) . SO the address of the current implementation of any package is stored as
rks.CONTROLLER . That means if someone can hack the implementation address and make a transaction on its behalf to change the
controller, this attacker can change the current implementation to a malicious one.

While this issue may not be exploitable now, many new packages are still to be implemented. So you need to ensure that nobody
can get any control over the implementation contract.

4.5 The Price Change Limit Could Prevent the Setting of the Correct Price. g

In the share price update logic of OracleExtensionLib, there is a function called sanitycheck . As part of that function, a maximum
share price change is checked. In reality, for smaller pools, this can result in an inability to update prices. For example, if the pool
was serviced by a single node operator who gets severely slashed, the price being reported by the oracle could easily be more
different than the maximum threshold. In this case, the pool would operate at the incorrect price for about 24 hours. Given that
we do not have the whole code base in the scope and that some part of the codebase is not complete we can not estimate the
risk of such an event. We believe that the Withdrawal Module could be one of the affected modules in such a case.

4.6 Potential for a Cross-Site-Scripting When Creating a Pool. ¢zm

When creating a new staking pool, the creator has the ability to name it. While it does not present many issues on the chain, if
this name is ever displayed on the Ul it has to be handled carefully. An attacker could include a malicious script in the name and
that could potentially be executed in the victim’s browser.

contracts/Portal/modules/StakeModule/libs/StakeModuleLib.sol:L358

DATASTORE .writeBytes(poolId, rks.NAME, name);

We suggest that proper escaping is used when displaying the names of the pool on the Ul. We do not recommend adding string
validation on the chain.

Appendix 1- Disclosure

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

POWERED BY CONSENSYS

https://consensys.net/

