CONSENSYS
@Dlllgence AUDITS FUZZING SCRIBBLE ABOUT

MetaMask/Partner Snaps -
StarknetSnap

1 Executive Summary

2 Scope Date June 2023
2.1 Verification Phase Auditors Martin Ortner
2.2 Objectives

3 Snap Outline 1 Executive Summary

3.1 Capabilities))))
This report presents the results of our engagement with ConsenSys to review their MetaMask Starknet Snap.

3.2 Dependencies

AFindi The review was conducted from June 26, 2023 to June 29, 2023. A total of 4 person-days were spent.
indings

41 RPC 2 Scope

starkNet_sendTransaction - The
User Displayed Message
Generated With The review focused on the commit hash ec24b0053eae641f49e4095809979¢c2839758bdf. The list of files in scope can be found

getSigningTxnText() Is Proneto
Markdown/Control Chars
Injection From contractCallData

in the Appendix.

e 2.1 Verification Phase
4.2 Lax Validation Using Mitigations were reviewed from July 18, 2023 to July 20, 2023 focussing on the commit hash
Cetarknet: validateAndrarsehde 7231bb7fa4671283b2e7b4cbf5a519d56a57697a.
Allows Short Addresses and Does . .
Not Verify Checksums 2.2 Ob]eCtlveS
v Fixed

Together with the client, we identified the following priorities for this review:
4.3 RPC starkNet_signMessage -

Fails to Display the User Account 1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.
That Is Used for Signing the
Message 7 Fixed 2. ldentify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Threat Model

describing a Snap as an extension of the MetaMask Wallet Trust Module.
4.4 RPC starkNet_signMessage -

Inconsistency When Previewing

the Signed Message (Markdown 3 Sna p Outl i ne

Injection) v Fixed

4.5 Ul/AlertView - Unnecessary e The snap requests access to coinType:9004 BIP44 Entropy, effectively managing the coins private root key.

Use of (angeietolV e sEIDEILIRE e The private key can be displayed to the user within the context of the snap.

Medium = v Fixed . L
e The private key can not be exported to an RPC origin.

4.6 RPC starkNet_addErc2@Token e Transactions are signed within the realm of the snap.
- Should Ask for User

Confirmation Medium [V ERga e The public key is exposed to connected snaps without additional user confirmation.

e The snap may interact with the following 3rd party service providers via the fetch() API:
4.7 getKeysFromAddress -

Possible Unchecked Null
Dereference When Looking Up O https://voyager.online

Private Key Medium | ¥ Fixed

O https://api.coingecko.com

O https://infura.io

4.8 RPC O https://starknet.io
starkNet_getStoredTransactions

- Lax or Missing Input Validation
(ILE3 won't Fix e Connected dapps can communicate with the snap via MetaMask snap RPC.

o and potentially others

4.9 Disable Debug Log for

Production Build ([} = ¢ Fixed 31 Capabllltles

4.0 package.json - Dependecy

Mixup (5D | ¢ Fixed

411 package.json - Invalid License

m ¥ Invalid

412 RPC
starkNet_extractPrivateKey -

Should Be Renamed to
starkNet_displayPrivateKey

Won't Fix

413 Ul/hooks -

detectEthereumProvider ()
Should Require mustBeMetaMask

Won't Fix
414 RPC starkNet_addNetwork -

Not Implemented, No User
Confirmation Won't Fix

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

https://github.com/ConsenSys/starknet-snap/tree/ec24b0053eae641f49e4095809979c2839758bdf
https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a
https://docs.metamask.io/snaps
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

@) o MetaMask Notification

@consensys/starknet-snap

v1.7.0 (5
@ http:/localhost:8081/ G

Install snap

localhost wants to install http://localhost:8081/, which is
requesting the following permissions. Make sure you trust
the authors before you proceed.

p» Control your StarkNet accounts and assets. a

Requested now

@ Accesstheinternet.

Requested now

1. Allowwebsites to communicate directly with
this snap.

Requested now

Display dialog windows in MetaMask.

Requested now

9

Store and manage its data on your device.

Requested now

< Cancel) Approve & install

Permissions
Details

2485 (lines of code)
[# == Bundle ==

A - bundle (../../dist/bundle.js) does not not exist!

& - package-lock missing

A - package.json: invalid license '(Apache-2.8 OR MIT)'

A - package.json: incomplete package files selection 'undefined'
----%<---- raw permissions

: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
{

snap_dialog: {},

"endowment :network-access': {},
snap_getBip44Entropy: [{ coinType: 9004 } 1],
snap_manageState: {},

"endowment:rpc': { snaps: false, dapps: true }

}
---->%---- raw permissions
#a [snap_dialog]
=~ - snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.

! - this method renders Markdown! check for ctrlchar/markdown/injection
src/signMessage.ts
src/sendTransaction.ts
src/recoverAccounts.ts
src/index.ts
src/extractPrivateKey.ts
src/createAccount.ts
#m [endowment:network-access]
- endowment :network-access - snap can access internet
! - this method may leak information to external api
src/utils/starknetUtils.ts
#o [snap_getBip44Entropy]
- snap_getBip44Entropy - Gets the BIP-44 coin_type key for the coin_type number specified by the method name. See SLIP-44 for the list of avail:
! - If you call this method, you receive the user's parent key for the protocol they request. You're managing the user's keys and assets on the
src/utils/keyPair.ts
[snap_manageState]
= - snap_manageState - snap can store up to 100mb (isolated)
src/index.ts
src/utils/snapUtils.ts
[endowment:rpc]
I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!
src/index.ts

3.2 Dependencies

4 - Package Depenencies:
- async-mutex:%0.3.2
- chai:*4.3.6
- ethereum-unit-converter:%0.0.17
- ethers:A5.5.1
- sinon:%13.0.2
- sinon-chai:*3.7.0
- starknet:7%4.22.0
- starknet_v4.6.0:npm:starknet@4.6.0

4 Findings
Each issue has an assigned severity:

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* 'Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

issues are directly exploitable security vulnerabilities that need to be fixed.

A41RPC starkNet_sendTransaction - The User Displayed Message Generated With

getSigningTxnText() IsProne to Markdown/Control Chars Injection From contractCallData
m v Fixed

https://consensys.net/diligence/audits/private/j5p4c7oj1p8cxv/img/permissions.png

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by rendering untrusted user input with
the copyable Ul component, preventing markdown injection. Additionally, the client provided the following statement:

1. restructure dialog ui by using MM copyable field, it can ignore any markdown or tag block

2. validate send transaction calldata has to be able to convert to bigint

Description

In the code snippet below, contractcalipata is potentially untrusted and may contain Markdown renderable strings or strings
containing Control Characters that break the context of the message displayed to the user. This can lead to misrepresenting the
transaction data to be signed, which should be avoided.

packages/starknet-snap/src/utils/snapUtils.ts:L163-L195

export function getSigningTxnText(

state: SnapState,

contractAddress: string,

contractFuncName: string,

contractCallData: string[],

senderAddress: string,

maxFee: number.BigNumberish,

network: Network,

): string {

// Retrieve the ERC-20 token from snap state for confirmation display purpose

const token = getErc20Token(state, contractAddress, network.chainId);

let tokenTransferStr = '';

if (token && contractFuncName === 'transfer') {

try {
let amount = '';
if ([3, 6, 9, 12, 15, 18].includes(token.decimals)) {
amount = convert(contractCallData[1], -1 * token.decimals, 'ether');
} else {
amount

}
tokenTransferStr = “\n\nSender Address: ${senderAddress}\n\nRecipient Address: S{contractCallData[@]}\n\nAmount(S{token.sy

} catch (err) {
console.error(getSigningTxnText: error found in amount conversion: ${err}’);

(Number(contractCallData[1]) * Math.pow(10, -1 * token.decimals)).toFixed(token.decimals);

}
}

return (
“Contract: S{contractAddress}\n\nCall Data: [${contractCallData.join(', ')}]\n\nEstimated Gas Fee(ETH): S${convert(
maxFee,
‘wei',
"ether’,
)}\n\nNetwork: ${network.name}' + tokenTransferStr
ik
}

packages/starknet-snap/src/sendTransaction.ts:L60-L80

const signingTxnText = getSigningTxnText(
state,
contractAddress,
contractFuncName,
contractCallData,
senderAddress,
maxFee,
network,

)

const response = await wallet.request({
method: 'snap_dialog’,
params: {
type: DialogType.Confirmation,
content: panel([
heading('Do you want to sign this transaction ?'),
text(It will be signed with address: S${senderAddress}’),
text(signingTxnText),
1,
H
});

Please note that we have also reported to the MM Snaps team, that dialogues do not by default hint the origin of the action. We
hope this will be addressed in a common way for all snaps in the future,

Recommendation

Validate inputs. Encode data in a safe way to be displayed to the user. Show the original data provided within a pre-text or code-
block. Show derived or decoded information (token recipient) as additional information to the user.

4.2 Lax Validation Using @starknet : :validateAndParseAddress Allows Short Addresses and
Does Not Verify Checksums zm v

Resolution

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by wrapping validateAndParseAddress()
with an implicit length check. Additionally, the client provided the following statement:

1. Add validation on the snap side for address length

2. Checksum will not implement as some users are going to call the Snap directly without going through the
dApp

As per the client’s decision, checksummed addresses are not enforced.

Description
Address inputs in RPC calls are validated using estarknet: :validateAndParseAddress() .

packages/starknet-snap/src/getErc20TokenBalance.ts:L19-L28

try {
validateAndParseAddress(requestParamsObj.tokenAddress);

} catch (err) {
throw new Error(The given token address is invalid: ${requestParamsObj.tokenAddress}’);

}

try {
validateAndParseAddress(requestParamsObj.userAddress);

} catch (err) {
throw new Error(The given user address is invalid: ${requestParamsObj.userAddress}’);

}

While the message validates the general structure for valid addresses, it does not strictly enforce address length and may silently
add padding to the inputs before validation. This can be problematic as it may hide user input errors when a user provides an
address that is too short and silently gets left-padded with zeroes. This may unintentionally cause a user to request action on the
wrong address without them recognizing it.

../src/utils/address.ts:L14-L24

export function validateAndParseAddress(address: BigNumberish): string {
assertInRange(address, ZERO, MASK_251, 'Starknet Address');

const result = addAddressPadding(address);

if (!result.match(/*(08x)?[0-9a-fA-F]{64}S/)) {
throw new Error('Invalid Address Format');

}

return result;

}

export function validateAndParseAddress(address: BigNumberish): string {
assertInRange(address, ZERO, MASK_251, 'Starknet Address');

const result = addAddressPadding(address);
if (!'result.match(/*(0x)?[0-9a-fA-F]{64}S/)) {

throw new Error('Invalid Address Format');

}

return result;

Recommendation
The exposed Snap API should strictly validate inputs. User input must be provided in a safe canonical form (exact address length,

checksum) by the dapp.

4.3 RPC starkNet_signMessage - Fails to Display the User Account That Is Used for Signing the
Message o [Vrixed

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by displaying the signing accounts
address with the dialog. All user-provided fields are copyable, preventing any markdown injection. Additionally, the client
provided the following statement:

1. add signer address add bottom of the dialog

We want to note that the origin of the RPC call is not visible in the dialog. However, we recommend addressing this with the
MM Snap SDK by generically showing the origin of MM popups with the dialog.

Description

The signing request dialogue does not display the user account that is being used to sign the message. A malicious dapp may
pretend to sign a message with one account while issuing an RPC call for a different account.

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a
https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

Note that StarkNet signing requests should implement similar security measures to how MetaMask signing requests work. Being
fully transparent on “who signs what”, also displaying the origin of the request. This is especially important on multi-dapp snaps
to avoid users being tricked into signing transactions they did not intend to sign (wrong signer).

packages/starknet-snap/src/signMessage.ts:L34-L42

const response = await wallet.request({
method: 'snap_dialog',
params: {

type: DialogType.Confirmation,
content: panel([heading('Do you want to sign this message ?'), text(JSON.stringify(typedDataMessage))]),

¥
1)

if (!'response) return false;

Examples

Ul does not show the signing accounts address. Hence, the user cannot be sure what account is used to sign the message.

@ ® MetaMask Notification

@consensys/starknet-sna
ys/star P w700
@ http://localhost:8081/

@ Content from @consensys/starknet-snap

Do you want to sign this
message ?

{"message":"who signs this?"}

Reject Approve

Recommendation

Show what account is requested to sign a message. Display the origin of the RPC call.

4.4 RPC starkNet_signMessage - Inconsistency When Previewing the Signed Message

(Markdown Injection) ez (ke

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by rendering user-provided
information with the copyable Ul component. Additionally, the client provided the following statement:

1. restructure dialog ui by using MM copyable field, it can ignore any markdown or tag block

Description

The snap displays an dialogue to the user requesting them to confirm that they want to sign a message when a dapp performs a
request to starkNet_signMessage . HOowever, the MetaMask Snaps Ul text() component will render Markdown. This means that the

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

message-to-be-signed displayed to the user for approval will be inaccurate if it contains Markdown renderable text.

packages/starknet-snap/src/signMessage.ts:L35-L41

const response = await wallet.request({
method: 'snap_dialog',
params: {
type: DialogType.Confirmation,
content: panel([heading('Do you want to sign this message ?'), text(JSON.stringify(typedDataMessage))]),
i
3y

Examples

{"a *xmykey**":"this should not render **markdown** <pre>test</pre>bbbstrongstrong[visit oststrom] (https

@ ® MetaMask Notification

@consensys/starknet-snap

v1.7.0 (4
@ http://localhost:8081/ L5

@ Content from @consensys/starknet-snap

Do you want to sign this
message ?

{"a mykey":"this should not render
markdown <pre>test</pre>bbb
strongstrong</strong» ital"}

Recommendation

Render signed message contents in a code block or preformatted text blocks.

Note: we've also reported this to the MetaMask Snaps team to provide further guidance.

4.5 Ul/AlertView - Unnecessary Use of dangerouslySetInnerHTML ivedium [VFied

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by not using dangerouslySetInnerHTML .
Additionally, the client provided the following statement:

1. Remove dangerouslySetinnerHTML from Ul

Description

Alertview is populated by setting innerttvL instead of the component’s value, which would be auto-escaped. This only makes
sense if the component is supposed to render HTML. However, the component is never used with HTML as input, and the
attribute name text is misleading.

packages/wallet-ui/src/components/ui/atom/Alert/Alert.view.tsx:L11-L36

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

export function AlertView({ text, variant, ...otherProps }: Props) {
const paragraph = useRef<HTMLParagraphElement | null>(null);
const [isMultiline, setIsMultiline] = useState(false);
useEffect(() => {
if (paragraph.current) {
const height = paragraph.current.offsetHeight;
setIsMultiline(height > 20);
}
o1

return (
<Wrapper isMultiline={isMultiline} variant={variant} {...otherProps}>

<>

{variant === VariantOptions.SUCCESS && <LeftIcon icon={['fas', 'check-circle']} />}
{variant === VariantOptions.INFO && <LeftIcon icon={['fas', 'info-circle']} color={theme.palette.info.dark} />}
{variant === VariantOptions.ERROR && (
<LeftIcon icon={['fas', 'exclamation-circle']} color={theme.palette.error.main} />
)}
{variant === VariantOptions.WARNING && (
<LeftIcon icon={['fas', 'exclamation-triangle']} color={theme.palette.warning.main} />
)}
<Parag ref={paragraph} color={variant} dangerouslySetInnerHTML={{ __html: text }} />
</>
</Wrapper>

)
}

packages/wallet-ui/src/components/ui/organism/NoFlaskModal/NoFlaskModal.view.tsx:L4-L25

export const NoFlaskModalView = () => {
return (
<Wrapper>
<StarknetLogo />
<Title>You don't have the MetaMask Flask extension</Title>
<DescriptionCentered>
You need to install MetaMask Flask extension in order to use the StarkNet Snap.

<AlertView
text="Please make sure that the regular MetaMask extension is disabled or use a different browser profile"
variant="warning"
/>
</DescriptionCentered>

<ConnectButton customIconLeft={<FlaskIcon />} onClick={() => {}}>
Download MetaMask Flask
</ConnectButton>

</Wrapper>
¥
fh:

Setting HTML from code is risky because it’'s easy to inadvertently expose users to a cross-site scripting (XSS) attack.

Recommendation

Do not use dangerouslysetInnerHTML Unless there is a specific requirement that passed in HTML be rendered. If so, rename the
attribute name to htm1 instead of text to set clear expectations regarding how the input is treated. Nevertheless, since the
component is not used with HTML input, we recommend removing dangerouslysetInnerHTML altogether.

4.6 RPC starkNet_addErc20Token -Should Ask for User Confirmation wicaum [Fixed

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by requesting user confirmation for
adding new ERC20 Tokens. Additionally, the client provided the following statement:

1. Adding confirm dialog with MM copyable field, it can ignore any markdown or tag block

2. Disable loading frame when user reject the add ec220 token request on Ul

Description

The RPC method upserts ERC20 tokens received via RPC without asking the user for confirmation. This would allow a connected
dapp to insert/change ERC20 token information anytime. This can even be more problematic when multiple dapps are connected
to the StarkNet-Snap (race conditions).

packages/starknet-snap/src/addErc20Token.ts:L30-L47

https://en.wikipedia.org/wiki/Cross-site_scripting
https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

validateAddErc20TokenParams(requestParamsObj, network);

const erc20Token: Erc208Token = {
address: tokenAddress,
name: tokenName,
symbol: tokenSymbol,
decimals: tokenDecimals,
chainId: network.chainId,

Ji§
await upsertErc2@0Token(erc20Token, wallet, saveMutex);
console.log(addErc2@Token:\nerc20Token: ${JSON.stringify(erc20Token)}");
return erc20Token;
} catch (err) {

console.error(Problem found: S${err}’);
throw err;

Recommendation

Ask the user for confirmation when changing the snaps state.

4.7 getKeysFromAddress - Possible Unchecked Null Dereference When Looking Up Private Key

Medium v Fixed

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by throwing an exception on error.
Additionally, the client provided the following statement:

1. instead of return null, raise err in getKeysFromAddress, caller will catch the exception

Description

getKeysFromAddress() Mmay return null if an invalid address was provided but most callers of the function do not check for the nu11
condition and blindly dereference or unpack the return value causing an exception.

packages/starknet-snap/src/utils/starknetUtils.ts:L453-L455

}

return null;

2

Examples

packages/starknet-snap/src/signMessage.ts:L44-L46

const { privateKey: signerPrivateKey } = await getKeysFromAddress(keyDeriver, network, state, signerAddress);
const signerKeyPair = getKeyPairFromPrivateKey(signerPrivateKey);
const typedDataSignature = getTypedDataMessageSignature(signerKeyPair, typedDataMessage, signerAddress);

packages/starknet-snap/src/extractPrivateKey.ts:L37
const { privateKey: userPrivateKey } = await getKeysFromAddress(keyDeriver, network, state, userAddress);
packages/starknet-snap/src/extractPublicKey.ts:L31-L32

const { publicKey } = await getKeysFromAddress(keyDeriver, network, state, userAddress);
userPublicKey = publicKey;

packages/starknet-snap/src/sendTransaction.ts:L48-L52

const {
privateKey: senderPrivateKey,
publicKey,
addressIndex,
} = await getKeysFromAddress(keyDeriver, network, state, senderAddress);

packages/starknet-snap/src/signMessage.ts:L44-L45

const { privateKey: signerPrivateKey } = await getKeysFromAddress(keyDeriver, network, state, signerAddress);
const signerKeyPair = getKeyPairFromPrivateKey(signerPrivateKey);

packages/starknet-snap/src/verifySignedMessage.ts:L38
const { privateKey: signerPrivateKey } = await getKeysFromAddress(keyDeriver, network, state, verifySignerAddress);

packages/starknet-snap/src/estimateFee.ts:L48-L53

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

const { privateKey: senderPrivateKey, publicKey } = await getKeysFromAddress(
keyDeriver,
network,
state,
senderAddress,

Recommendation

Explicitly check for the nu11 or {3} case. Consider returning {; to not allow unpacking followed by an explicit null check.

4.8 RPC starkNet_getStoredTransactions - Lax or Missing Input Validation gzm = wontrix

Resolution

Won't fix. The client provided the following statement:
not fix, minor impact

We want to note that strict input validation should be performed on all untrusted inputs for read/write and read-only
methods. Just because the method is read-only now does not necessarily mean it will stay that way. Leaving untrusted inputs
unchecked may lead to more severe security vulnerabilities with a growing codebase in the future.

Description

Potentially untrusted inputs, e.g. addresses received via RPC calls, are not always checked to conform to the StarkNet address
format. For example, requestParamsobj.senderaddress iS never checked to be a valid StarkNet address.

packages/starknet-snap/src/getStoredTransactions.ts:L18-L26

const transactions = getTransactions(
state,
network.chainld,
requestParamsObj.senderAddress,
requestParamsObj.contractAddress,
requestParamsObj.txnType,
undefined,
minTimeStamp,

Recommendation

This method is read-only, and therefore, severity is estimated as Minor. However, it is always suggested to perform strict input
validation on all user-provided inputs for read-only and read-write methods.

4.9 Disable Debug Log for Production Build grm vees

Resolution

Addressed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a by introducing a configurable
logger. Additionally, the client provided the following statement:

1. add custom logger to replace console.log, and log message base on debug level, when debug level is off, it will
not log anything
2. update production CICD pipeline to build project with debug level = off/disabled

There're still some instances of console.1og() . However, internal state or full requests are not logged anymore. We would still
recommend replacing the remaining console.log calls (e.g. the one in addERC20Token).

Description

Throughout the codebase, there are various places where debug log output is being printed to the console. This should be
avoided for production builds.

Examples

packages/starknet-snap/src/index.ts:L45-L46

console.log(origin, request);

packages/starknet-snap/src/index.ts:L91-L92

console.log(S{request.method}:\nrequestParams: S${JSON.stringify(requestParams)}’);

packages/starknet-snap/src/index.ts:L103

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a

console.log(Snap State:\n${JSON.stringify(state, null, 2)}");

Recommendation

Remove the debug output or create a custom log method that allows to enable/disable logging to console.

410 package.json - Dependecy Mixup crm (Vs

Resolution

Fixed with Consensys/starknet-snap@7231bb7fa4671283b2e7b4cbf5a519d56a57697a as per recommendation. Additionally,
the client provided the following statement:

Move development dependencies to package.json::devDependencies

Description

The following dependencies are only used for testing or development purposes and should therefore be listed as devbependencies
in package.json , otherwise they may be installed for production builds, too.

e https://sinonjs.org/

e https://www.chaijs.com/

packages/starknet-snap/package.json:L50

"chai": "%4.3.6",

packages/starknet-snap/package.json:L53-L54

"sinon": "%13.0.2",

“sinon-chai": "%3.7.0",

Recommendation

Move development dependencies to package.json: :devDependencies .

411 package.json - Invalid License grm (Vinia

Resolution

Invalid. Legal clarified that it is perfectly fine to allow MIT+Apache2. Additionally, client provided the following statement:

not fix, choose to stick with dual license

Description
The license field in package.json is invalid.

packages/starknet-snap/package.json:L4

"license": "(Apache-2.0 OR MIT)",

Recommendation

Update the license field.

412 RPC starkNet_extractPrivateKey - Should Be Renamed to
starkNet_displayPrivateKey wontrix

Resolution

Won't Fix. The client provided the following statement:
not fix, the extractPrivateKey is not for display purpose

We want to note that we still encourage changing the method name and return value to explicitly return nu11 in the RPC
handler for the sake of good secure coding practices discouraging future devs to return implementing key extraction RPC
endpoints that may expose wallet credentials to a linked dapp.

Description

https://github.com/Consensys/starknet-snap/tree/7231bb7fa4671283b2e7b4cbf5a519d56a57697a
https://sinonjs.org/
https://www.chaijs.com/

It is recommended to rename starkNet_extractPrivatekey tO starkNet_displayPrivatekey as this more accurately describes what the RPC
method is doing.

Also, the way the method handler is implemented makes it appear as if it returns the private key to the RPC origin while the
submethod returns nu11l . Consider changing this to an explicit empty return to clearly mark in the outer call that no private key is
exposed to the caller. Not to confuse this with how starknet_extractPublickey Works which actually returns the pubkey to the RPC
caller.

packages/starknet-snap/src/index.ts:L123-L127

case 'starkNet_extractPrivateKey':
apiParams.keyDeriver = await getAddressKeyDeriver(snap);
return extractPrivateKey(apiParams);

413 Ul/hooks - detectEthereumProvider() Should Require mustBeMetaMask = wontrix

Resolution

Won't Fix. The client provided the following statement:

not fix, minor impact

Description

MetaMask Snaps require a Metamask provider. However, detectethereumProvider() does not explicitly require a MetaMask provider
and would continue if the alternative provider contains the substring fiask in their signature.

packages/wallet-ui/src/hooks/useHasMetamaskFlask.ts:L7-L16

const detectMetamaskFlask = async () => {
try {
const provider = (await detectEthereumProvider ({
mustBeMetaMask: false,
silent: true,
})) as any | undefined;
const isFlask = (await provider?.request({ method: 'web3_clientVersion' }))?.includes('flask"');
if (provider && isFlask) {
return true;

}

Consider requiring mustBeMetaMask = true to enforce that the injected provider is indeed MetaMask. This will also work with
MetaMask Flask as shown here:

= window.ethereum.isMetaMask

true

= await window.ethereum.request({ method: 'web3_clientVersion' })
'MetaMask/v10.32.0-flask.0'

414 RPC starkNet_addNetwork - Not Implemented, No User Confirmation = wontrix

Resolution

Won't Fix. The client provided the following statement:

not fix, minor impact

Description
It was observed that the RPC method starknet_addNetwork iS not implemented.

In case this method is to be exposed to dapps, we recommended to follow the advise given in issue 4.6 to ask for user
confirmation when adjusting the snaps configuration state.

Appendix 1 - Files in Scope

Total Code Comment ToDo Name Sha1
1 48 A1 src/addErc20Token. aeelb126f61f99befc73974f6eb1
ts 568a44036679
17cb8elecf264dadc8d011c25
2 28 24 src/addNetwork.ts cbeelec ade ceoa
92090e546166a8
3 163 149 1 src/createAccount.t 6b0909c362674c349e6¢c6b97

S 69eeb6cdeabb01713

10

N

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Total

54

127

53

44

46

18

16

34

22

21

141

44

186

97

142

54

143

71

162

57

531

508

Code

48

M

46

37

37

15

13

30

17

17

18

37

154

82

126

46

18

63

141

46

473

450

Comment ToDo

10

15

23

24

Appendix 2 - Disclosure

Name
src/estimateAccoun
tDeployFee.ts
src/estimateFee.ts
src/extractPrivateKe
y.ts

src/extractPublicKe
y.ts

src/getErc20TokenB
alance.ts

src/getStoredErc20
Tokens.ts

src/getStoredNetwo
rks.ts

src/getStoredTransa
ctions.ts

src/getStoredUserA
ccounts.ts

src/getTransactionS
tatus.ts

src/getTransactions.

ts

src/getValue.ts

src/index.ts
src/recoverAccount
s.ts
src/sendTransaction
s
src/signMessage.ts
src/types/snapApi.t
S

src/types/snapState
s

src/utils/constants.t

S

src/utils/keyPair.ts

src/utils/snapUtils.ts
src/utils/starknetUtil
s.ts

src/verifySignedMe
ssage.ts

Sha1

5f30f28d0490edab6a8382338
d5fe2d339eaac6d

Ocfdbfbef81ccbcbeece72151aec
f34a803cfa795

98c94715bc17cb4bbadd8c38e
08bc08c719e27c3

688c5c52bab89b0b22a69f6cf
ce89bfa59cbd5b3

37d3734bfbfd886db497f11e98
c95359679cb4c3

8a2a92a309746084f0185b6e47
6b5f38cd472e890

b15¢c50d24a57b711c39977a1162
5¢c0e089c07783

d8d7053e9b49cbc71e1865863
2a66cdedbb10706

15b946222bee92227t89907f77
94a13e02d9807d

c29cdf498cf328f36f49bab0c7
3e0c471137963c

ad6a70311ac385268de7aad69
b46d5e86a72b33e

f3035b134c504fb0279ccd2ae
8a7e70b5edb3aa4

c0da950dd27b239a93bc48ac
e593fbda06604085

b213e16d99cdb178550c9deba
28f523c792fac01

30439541fd07c87a76a1f254d2
ddf4c430dbl1a3f

37fbf18730c4a7f93446ad0ale
a638f8f02ec836

a94956047e420b64926df78c3
13031cbb9982e0c

21eacb5fb3c257e1096f95f0b0
55a208614244cb

f4a91bc93aca2f33628efbd9cf
b37567fe5bc034

b204d7157b3f7ba10889901b6
441b68fdedebal4d

6b371d0d7af027bcc9a83fcd42
f1756d25f13853

78c9f02da21bd3137aa220290a
effAddc6a80fb7

7259f7b8d33b2e05acbbc23d9
986d58d3e52a548

ConsenSys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via ConsenSys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any Third-Party in any respect, including regarding the bugfree nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any Third-Party by virtue of publishing these Reports.

PURPOSE OF REPORTS The Reports and the analysis described therein are created solely for Clients and published with their
consent. The scope of our review is limited to a review of code and only the code we note as being within the scope of our review
within this report. Any Solidity code itself presents unique and unguantifiable risks as the Solidity language itself remains under
development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them
high levels of technical risk and uncertainty. In some instances, we may perform penetration testing or infrastructure
assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) - on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

LINKS TO OTHER WEB SITES FROM THIS WEB SITE You may, through hypertext or other computer links, gain access to web sites
operated by persons other than ConsenSys and CD. Such hyperlinks are provided for your reference and convenience only, and
are the exclusive responsibility of such web sites’ owners. You agree that ConsenSys and CD are not responsible for the content
or operation of such Web sites, and that ConsenSys and CD shall have no liability to you or any other person or entity for the use
of third party Web sites. Except as described below, a hyperlink from this web Site to another web site does not imply or mean
that ConsenSys and CD endorses the content on that Web site or the operator or operations of that site. You are solely
responsible for determining the extent to which you may use any content at any other web sites to which you link from the
Reports. ConsenSys and CD assumes no responsibility for the use of third party software on the Web Site and shall have no
liability whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

TIMELINESS OF CONTENT The content contained in the Reports is current as of the date appearing on the Report and is subject
to change without notice. Unless indicated otherwise, by ConsenSys and CD.

POWERED BY COﬂSEnSYS

https://consensys.net/

