@Diligence

FUZZING SCRIBBLE ABOUT

VEN L TET

1 Executive Summary

2 Scope

2.1 Objectives

3 Snap Overview
3.1 Capabilities

3.2 Permissions

4 Findings

41 Server Should Not Rely on
Clients’ Randomness

v Fixed

4.2 Missing Input Validation for
WalletAddress v Fixed

4.3 Properties of the
transaction Object Might Be
Undefined 'Medium

4.4 AssetChangeComponent

Displays a Change With Value O if

fiatValue < 0.005 'Medium

4.5 Incomplete NatSpec and
General Documentation ({3

4.6 formatFiatValue() Can Be

Simplified (I3

4.7 No Way to Disable Approvals
Checking, and Transaction

Analytics (I

4.8 devDependencies Erroneously

Listed as dependencies [t

4.9 package.json - Missing

Author (I3

410 Extra ‘If’ Statement
411 Misleading Comment

412 Wallet Monitoring
Improvements

413 Consider Submitting Snap

Version With Backend API
Requests

Appendix 1 - Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

Date July 2023

1 Executive Summary

This report presents the results of our engagement with Wallet Guard to review the Wallet Guard Snap.

The review was conducted over two person days, from July 13, 2023 to July 14, 2023, by Valentin Quelquejay. A total of 2
person-days were spent.

2 Scope

Our review focused on the commit hash 695¢c7874d4ac8ffeas54e9ddsc7fc6925189374 . The list of files in scope can be found in the
Appendix.

2.1 Objectives
Together with the Wallet Guard team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Threat Model
describing a Snap as an extension of the MetaMask Wallet Trust Module.

3 Snap Overview

3.1 Capabilities

e The snap stores the address of the wallet to be monitored in snap_managestate .

e The snap interacts with the wallet guard API (https://api.walletguard.app/) via the fetch() API for:
o Simulating transactions

o Fetching wallet approvals
e The Wallet Guard dapp (dashboard.walletguard.app) can communicate with the snap via MetaMask snaps RPC.
e The snap registers a cronjob that fires every 14 days, prompting the user to revoke its dangerous approvals.
e The snap can read every transaction, including the transaction origin, to provide transaction insights.

e The snap can display notifications to the user asking him to revoke its dangerous approvals.

3.2 Permissions

https://docs.metamask.io/snaps
https://api.walletguard.app/
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

[) @ Extension: (MetaMask Flask) - MetaMask...

v Wallet Guard

v1.0.0 (4
@ http:/localhost:8080

Install snap

Installing Wallet Guard gives it the following
permissions. Only continue if you trust Wallet
Guard.

)N Allow websites to communicate
directly with this snap.

Requested now

PN Access the internet. .
- snap_dialog {}

Requested now

endowment:rpc { dapps: , snaps: }
o endowment:transaction-insight { allowTransactionOrigin: }
© Schedule and execute periodic endowment:network-access {}
actions. snap_notify {}
Requested now snap_manageState {}
endowment:cronjob { jobs: [{ expression: '© 0 */14 % %', request: Y137

Display dialog windows in MetaMask.

Requested now

9

Fetch and display transaction
insights.

Requested now

@ Seethe origins of websites that
suggest transactions

Requested now

a Show notifications.

Requested now

Store and manage its data on your
device.

Requested now

(e G

4 Findings

Each issue has an assigned severity:

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* 'Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

4.1 Server Should Not Rely on Clients’ Randomness o (Ve

Resolution

The client acknowledged the issue, and let us know that the ID is only used for analytics purposes, to be compatible with the
existing API.

Description

The snap code sends a request to the Wallet Guard APl with a random UUID crypto.randomuuin() generated by the client. We would
like to underline that the APl should never trust clients’ randomness nor assume any property about it. Relying on client-
generated randomness for the API could lead to many vulnerabilities, such as replay attacks or collision issues due to the inability
to ensure uniqueness. The varying algorithms used by clients may be subpar or even compromised. As this id is not used
anywhere else in the snap code, we assume that it might be used on the API side. Because the APl is not in scope for this review,
we don’t have access to the code and cannot tell whether this pseudo-random UUID is used in a safe way.

packages/snap/src/http/fetchTransaction.ts:L32-L40

const simulateRequest: SimulateRequestParams = {
id: crypto.randomUUID(),
chainID: mappedChainId,
signer: transaction.from as string,
origin: transactionOrigin as string,
method: transaction.method as string,
transaction,
source: 'SNAP',

s

Recommendation

Don’t rely on clients’ randomness on the API. Instead, the server should assign a unique ID to every incoming request.

4.2 Missing Input Validation for WalletAddress m (v

Resolution

The client acknowledged the issue and fixed it in PR#25 here - Snap shasum vzN/+ty8x0TEacH191YGw1a9+MBCgL7PUKU9d /RF51E=

Description

The snap prompts users to input the wallet address to be monitored. Users can set wallet addreses that do not adhere to the

common Ethereum address format. The user input is not sanitized. This could lead to various injection vulnerabilities such as

markdown or control character injections that could break other components. In particular, the address is sent to the APl as a
URL query parameter. A malicious attacker could try using that to mount URL injection attacks.

packages/snap/src/index.ts:L50-L61

if (
request.method === RpcRequestMethods.UpdateAccount &&
‘walletAddress' in request.params &&
typeof request.params.walletAddress === 'string'

) A

const { walletAddress } = request.params;
if (!walletAddress) {

throw new Error('no wallet address provided');

}

updateWalletAddress(walletAddress);

Recommendation

Sanitize the address string input by the user and reject all addresses that do not adhere to the Ethereum address format.

4.3 Properties of the transaction Object Might Be Undefined wedium

Description

The Metamask Snaps API does not guarantee that the properties from and method Of the transaction Object are defined.
Depending on the transaction type, it could happen that these properties are not defined. This would result in a runtime error
when undefined is casted to string .

packages/snap/src/http/fetchTransaction.ts:L32-L40

const simulateRequest: SimulateRequestParams = {
id: crypto.randomUUID(),
chainID: mappedChainId,
signer: transaction.from as string,
origin: transactionOrigin as string,
method: transaction.method as string,
transaction,
source: 'SNAP',

Recommendation

One should check whether properties from , and method are defined, before explicitly casting them to a string. This could be done
by introducing a hasproperty utility function for instance.

4.4 AssetChangeComponent Displays a Change With Value O if fiatValue < 0.005 edium

Description

The toFixed(2) method rounds the transaction value string to 2 decimals. For transactions with fiatvalue < 0.005 , the function
returns O, meaning the component will display a transaction with zero value to the user, even if the transaction has a small yet
non-zero value. This is not a good idea as it might trick the user. In that case, it would be better to default to the smallest value
that can represented (i.e. 0.01) instead of O.

packages/snap/src/components/stateChanges/AssetChangeComponent.ts:L18

const fiatValue = Number(stateChange.fiatValue).toFixed(2);

Recommendation

If fiatvalue < 0.005 , consider displaying a value of e.e1 to the user, instead of O.

4.5 Incomplete NatSpec and General Documentation ¢
Description

The code is missing NatSpec documentation in many places. NatSpec documentation plays an important role in improving code
comprehension and maintenance. Adding NatSpec documentation to functions with significant logic that provides clear
explanations of behavior, inputs, and outputs enhances code readability, transparency, and maintainability of the codebase.

Recommendation

We recommend adding NatSpec documentation to every function that contains significant logic. Especially all the Snaps
handlers. This will improve the readability, transparency, and maintainability of the codebase. We also recommend adding a
detailed high-level documentation about the Snaps features, components, and permissions in the README.

46 formatFiatValue() Can Be Simplified ozm

https://github.com/wallet-guard/wallet-guard-snap/pull/25

Description

The function formatFiatvalue formats a number to a string that is displayed to the user. The function formats numbers with at most
2 decimal digits, removes the trailing zeros, and adds commas as thousands separators.

The function first converts the number to a string representing the number in fixed-point notation. Then, it uses regex to remove
the trailing zeros if they exist. Finally, it adds the thousands separators.

packages/snap/src/utils/helpers.ts:L16-L26

export const formatFiatValue = (
fiatValue: string,
maxDecimals: number,
): string => {
const fiatWithRoundedDecimals = Number (fiatValue)
.toFixed(maxDecimals)
.replace(/\.00S/u, '');

const fiatWithCommas = numberWithCommas(fiatWithRoundedDecimals);
return “SS{fiatWithCommas}";

s
The design of the function is unnecessarily complex. The whole design could be simplified using the native toLocalestring()

function with appropriate parameters.

Recommendation

Simplify the design by using the native toLocalestring function. For instance, the function could be used as follows

toLocaleString('en-US', {minimumFractionDigits: O, maximumFractionDigits: 2})

4.7 No Way to Disable Approvals Checking, and Transaction Analytics crm
Description

Currently, there is no easy way to disable wallet approval monitoring and/or transaction simulation apart from uninstalling the
snap. Users might want to opt out of wallet monitoring or disable transaction simulation selectively e.g., for privacy concerns.

Recommendation

We would recommend implementing a mechanism that allows users to selectively disable the snap features.

4.8 devDependencies Erroneously Listed as dependencies gmm

Description

The following dependencies are only used for development purpose and should therefore be listed as “devDependencies”
instead of “dependencies” in the package.json file. Indeed, the TypeScript code is compiled into a bundle, which is released.
Meaning the snap “production” code should not contain any external dependency.

packages/snap/package.json:L28-L31

"dependencies": {
"@metamask/snaps-types": "%0.32.2",
"@metamask/snaps-ui": "%0.32.2"

3,

Recommendation

List the dependencies as “devDependencies”.

4.9 package. json - Missing Author gmm

Description
The package.json file is missing the author name, the link to the project homepage, and to the bug tracker.
Recommendation

According to package publishing best practices, we recommend adding those elements to the package.json file.

410 Extra ‘If’ Statement
Description
The onrpcrequest() handler returns early if walletaddress is not defined.

packages/snap/src/index.ts:L57-L59

if (!walletAddress) {
throw new Error('no wallet address provided');

}

Thus, the extra ‘if’ check before calling snap.request() is superfluous and can be removed.

packages/snap/src/index.ts:L57-L64

if (!'walletAddress) {
throw new Error('no wallet address provided');

}

updateWalletAddress(walletAddress);

if (walletAddress) {
await snap.request({

Recommendation

Remove the extra ‘if’ check.

411 Misleading Comment

Description

The NatSpec comment indicates that onrpcrequest() returns “the result of snap_dialog ” While the method either does not return
anything, or returns the Ethereum address of the monitored wallet.

packages/snap/src/index.ts:L24-L34

Recommendation

Fix the comment.

412 Wallet Monitoring Improvements

Description

The snap allows the user to set an arbitrary wallet address to be monitored for dangerous approvals. This feature is only of limited
use and could be improved by:

e Allowing to specify multiple addresses to monitor (a wallet typically consists of many accounts that are managed under the
wallet key)

e Allowing users to fetch connected addresses via the ethereum APl directly instead of requiring the user to input valid accounts

e For privacy reasons, allowing users to opt out of transaction analytics on a per-account basis (Currently, every transaction
and transaction origin is sent to the API, even if no monitored wallet address is set).

413 Consider Submitting Snap Version With Backend API Requests

Description

Consider adding the snap package version to the API requests in order to get insights about what snap versions are used in the
field. This could be useful for future debugging and forensics when multiple snap versions will coexist.

packages/snap/src/http/fetchTransaction.ts:L32-L40

const simulateRequest: SimulateRequestParams = {
id: crypto.randomUUID(),
chainID: mappedChainId,
signer: transaction.from as string,
origin: transactionOrigin as string,
method: transaction.method as string,
transaction,
source: 'SNAP',

packages/snap/src/types/simulateApi.ts:L25-L35

export type SimulateRequestParams = {
id: string;
chainID: string;
signer: string;
origin: string;
method: string;
transaction: {
[key: string]: Json;
I
source: 'SNAP';

}s

Appendix 1- Files in Scope

This audit covered the following files:

File SHA-1 hash

File SHA-1 hash

../packages/snap/snap.config.js 89eald61eb7c441435218bf5844c40b570b1fcof
../packages/snap/src/components/OnboardingReminderComponent.ts b8d3fad340a6b805df9d10bF9891f5f3413aa6ed
../packages/snap/src/components/RiskFactorsComponent.ts b27e86fd63721a43da1e35812cbc7b7172aa8526
../packages/snap/src/components/SimulationOverviewComponent.ts 02077aab340a8a915a1843760214c9087b9dbf8
../Jpackages/snap/src/components/StateChangesComponent.ts 51b4ca57158edf5217¢75¢357365ch1db2bd3857

../packages/snap/src/components/assetChanges/AssetChangeComponent.ts 15778c73bafal17ec14e5a3b142fd1e5137a3285

../packages/snap/src/components/assetChanges/GasComponent.ts £9dObd451d46bf242711880462211c765344f48a
../packages/snap/src/components/assetChanges/NoChangesComponent.ts 81e71eaab666021c3d2b7bdf90fcaddf7be10af59
../packages/snap/src/components/assetChanges/index.ts 8490fe8d8c3184bd9e7245766a8¢c7c9ece25cd04
../packages/snap/src/components/errors/ErrorComponent.ts 134004a5962002945b2 f80ec5aad5340fcob9b5a
../packages/snap/src/components/errors/InsufficientFundsComponent.ts 5a6ab45939ac75a2ff453aceel1dfadfcd438602
../packages/snap/src/components/errors/RevertComponent.ts 5bf65f6c2b1572f592e53d1ed7339bd8 1218826
../packages/snap/src/components/errors/TooManyRequestsComponent.ts 19c0a31091089c90ebf3f6a112d708cc22b90405
../packages/snap/src/components/errors/UnauthorizedComponent.ts ff469b19832e4eb92f21aee326a088ea343b5b30
../packages/snap/src/components/errors/UnsupportedChainComponent.ts bcbechfc2be669386F491f5f5cadee79ac71867
../packages/snap/src/components/errors/index.ts e2b2e66ee47d846a566b3981F6db3237a4fbadf3
../packages/snap/src/components/errors/mapper.ts 991¢63f37ad822f62b69154a65aeedas3aaf2614
../packages/snap/src/components/index.ts c2f9362ed8d5a82ae761734af7aa326485d35d8a
../packages/snap/src/http/fetchApprovals.ts 026a4d625c48d2827f736aecddbe3b7d84daeesc
../packages/snap/src/http/fetchTransaction.ts 6€93224cf1c281ff99a23b45739fe2546€854419
../packages/snap/src/index.ts 0dc598b61a696879bb45e8d118bach5d61a4659d
../packages/snap/src/types/approvalsApi.ts dd143f3ab7400fc5053a2deddd4c5ccec3035bet
../packages/snap/src/types/chains.ts c53a0eba39d2f21f1b7ad50eec94b55e122a3b5e
../packages/snap/src/types/simulateApi.ts 75dda9659e890e28f65f fa954a47b9fd06651 fad
../packages/snap/src/utils/account.ts 04cd1040973b9d86343125d4a373e439b71ed88bc
../packages/snap/src/utils/config.ts d500d900e8c1980d36aa5e2a5ba9f93060faasaf
../packages/snap/src/utils/environment.ts d690ac5172e767a6386119a746dc3c99c626319
../packages/snap/src/utils/helpers.ts 14£29385952ea65acc989cace66a68adbbcO97fd
../packages/snap/src/package.json bf4eadf52c4653e6409b2a4051be617002761b71

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys

and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY ‘ consensys

https://consensys.io/

