@Diligence AUDITS

FUZZING SCRIBBLE ABOUT

Solflare MetaMask Snaps - Solflare, Sui,
Aptos

1 Executive Summary

2 Scope

2.1 Objectives

3 Snap Outlines
3.1 Details: Solflare Snap
3.2 Details: Sui Snap

3.3 Details: Aptos Snap

4 Findings

4.1 Dapp May Force a Sign
Approval Dialog Without Showing
the Message to Be Signed

v Fixed

4.2 CtrlIChar/Markdown Injection

in rende rSignTransaction ,
renderSignAllTransactions

v Fixed

4.3 Insufficient Input Validation
deriveKeyPair() ' Medium

4.4 Dapp May Suppress User
Confirmation on Request to
Extract Pubkey; May Extract Any
Net-Key Medium

4.5 Production Builds Allow
Development and Localhost
Origins; Snap Does Not Enforce
Transport Security 'Medium

Partially Addressed

4.6 Misleading HTML Entity and
Function Name getPrivkey

m ¥ Fixed

4.7 Use of Outdated
snap.config.json Instead of

snap.config.js ([& ¥ Fixed

4.8 Inconsistent or Blank Fields in
package.json (Y @ ¢ Fixed

4.9 Consider Using

@metamask/detect-provider

410 Consider Prefixing RPC Calls

With solana_*, sui_=*,

aptos_x*

411 Consider Moving to
TypeScript

Appendix 1 - Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

Date August 2023

Auditors Martin Ortner

1 Executive Summary

This report presents the results of our engagement with Solflare Wallet to review three MetaMask Snaps, the aptos-snap for Rise
Wallet, the solana-snap for Solflare, and the sui-snap for Elli Wallet.

The review was conducted from Aug 15, 2023 to July 25, 2023. A total of 9 person-days were spent.

2 Scope

The review focused on the following repositories and commit hashes:

¢ solflare-snap@792fcb2a253c572677271044ece061daae81ce4d]
* sUi-sNnap@39740383fd11174a406a1a27e15¢c92f277d00779
¢ aptos-snap@36145fbb8f4963eb02cff26a549ac348a34d8cb3

The dapp wallets interfacing with the snap are not in scope of this review.

The list of files in scope can be found in the Appendix.

2.1 Objectives
Together with the client, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Threat Model
describing a Snap as an extension of the MetaMask Wallet Trust Module.

3 Snap Outlines

e The three snaps share certain parts of the codebase (duplications) and expose similar functionality to dapps.
o ui.js -identical
o privatekey.js - identical (ex. coinld)
o index.js - logically similar: diff coinSpecifics, origin checks
o utils.js - aptos with additional functions: hex2bytes, bytes2hex
o auxfiles: logically similar
e The three snaps individually request sensitive BIP32 Entropy (SLIP-44), effectively managing the following coins private root
key:
o m/44' /501" (Solana)
o msa4a/784' (Sui)
o m/44'/637' (Aptos)
e Connected dapps can communicate with the snap via MetaMask snap RPC. Dapp origins are enforced as follows:
o Solana: localhost, *solflare.com, *solfalre.dev

o Sui: localhost, *elliwallet.dev
o Aptos: localhost, *risewallet.dev
e Other snaps cannot directly communicate with one of the three snaps under review.
e The public key is exposed to connected dapps without additional user confirmation if the dapp chooses so.
e The private key can not be exported to the RPC origin.
e Transactions/Messages are signed within the realm of the snap.

e The snap may display custom MetaMask dialogs.

3.1 Details: Solflare Snap

https://github.com/solflare-wallet/solflare-snap/tree/792fcb2a253c572677271044ece061daae81ce41
https://github.com/solflare-wallet/sui-snap/tree/39740383fd11174a406a1a27e15c92f277d00779
https://github.com/solflare-wallet/aptos-snap/tree/36145fbb8f4963eb02cff26a549ac348a34d8cb3
https://docs.metamask.io/snaps
https://github.com/satoshilabs/slips/blob/master/slip-0044.md
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

[# ==

o
A

FsChecks ==]
undefined

[#% == Manifest ==

- no linter config

]

A - bundle (dist/bundle.js) does not not exist!
@ -- Manifest errors --
& Error: Failed to read Snap bundle file: ENOENT: no such file or directory, open '/Users/tintin/workspace/solidity/solflare-wallet-snaps-audit-2¢
& - package.json: metamask template package.conf repo.url not correct 'undefined'
----%<---- raw permissions
: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
endowment:rpc { dapps: true, snaps: false }

snap_dialog {}

snap_getBip32Entropy [{ path: ['m', "44'", "501'"], curve: 'ed25519' }]
---->%---- raw permissions

#0 [endowment:rpc]

I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!

src/index.js

#a [snap_dialog]
- snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.
- this method renders Markdown! check for ctrlchar/markdown/injection

"

src/ui.js

#a [snap_getBip32Entropy]
- snap_getBip32Entropy - Gets the SLIP-10 key for the path and curve specified by the method name.
! - If you call this method, you receive the user's parent key for the derivation path they request. You're managing the user's keys and assets:

src/privateKey.js

4 - Package Depenencies:

¥ =
@

@babel/runtime:*7.21.5
@metamask/key-tree:27.0.0
@metamask/snaps-ui:*0.32.2
bs58:25.0.0
tweetnacl:*1.0.3

Bundle ==

Package.json OK

! Package.json Warnings:

| N

missing keywords
missing bugs
missing homepage
missing repository

3.2 Details: Sui Snap

[% == FsChecks ==]

W undefined

& - no linter config
[% == Manifest ==]

(#& looks like devDependency ==!)
(& looks like devDependency #=!)

& - bundle (dist/bundle.js) does not not exist!
@ -- Manifest errors --
& Error: Failed to read Snap bundle file: ENOENT: no such file or directory, open '/Users/tintin/workspace/solidity/solflare-wallet-snaps-audit-2¢

A

- package.json: metamask template package.conf repo.url not correct 'undefined’

----%<---- raw permissions
: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
endowment:rpc { dapps: true, snaps: false }

snap_dialog {}

snap_getBip32Entropy [{ path: ['m', "44'", "784'"], curve: 'ed25519' }]
---->%---- raw permissions
#o [endowment:rpc]

I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!

src/index.js

#a [snap_dialog]
- snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.
- this method renders Markdown! check for ctrlchar/markdown/injection

o

src/ui.js

#o [snap_getBip32Entropy]
- snap_getBip32Entropy - Gets the SLIP-10 key for the path and curve specified by the method name.
! - If you call this method, you receive the user's parent key for the derivation path they request. You're managing the user's keys and assets:

src/privateKey.js

4 - Package Depenencies:

[# ==
@

@babel/runtime:*7.21.5
@metamask/key-tree:%7.0.0
@metamask/snaps-ui:*0.32.2
@noble/hashes:71.3.1
base64-js:71.5.1
tweetnacl:*1.0.3

Bundle ==

Package.json OK

! Package.json Warnings:

| 2

missing keywords
missing bugs
missing homepage
missing repository

3.3 Details: Aptos Snap

(4 looks like devDependency =)
(& looks like devDependency ==!)

[% == FsChecks ==]
ll undefined
& - no linter config
[#% == Manifest ==]
A - bundle (dist/bundle.js) does not not exist!
@ -- Manifest errors --
& Error: Failed to read Snap bundle file: ENOENT: no such file or directory, open '/Users/tintin/workspace/solidity/solflare-wallet-snaps-audit-2¢
& - package.json: metamask template package.conf repo.url not correct 'undefined'
----%<---- raw permissions
: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
endowment:rpc { dapps: true, snaps: false }
snap_dialog {}
snap_getBip32Entropy [{ path: ['m', "44'", "637'"], curve: 'ed25519' }]
---->%---- raw permissions
[endowment:rpc]
I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!
src/index.js
[snap_dialog]

-~ - snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.
! - this method renders Markdown! check for ctrlchar/markdown/injection
src/ui.js

#5 [snap_getBip32Entropy]
- snap_getBip32Entropy - Gets the SLIP-10 key for the path and curve specified by the method name.
! - If you call this method, you receive the user's parent key for the derivation path they request. You're managing the user's keys and assets:
src/privateKey.js
4 - Package Depenencies:
- @babel/runtime:*7.21.5

- @metamask/key-tree:"7.0.0 (#& looks like devDependency ==!)
- @metamask/snaps-ui:*0.32.2 (& looks like devDependency #=!)
- tweetnacl:*1.0.3

[# == Bundle ==

6 Package.json OK
! Package.json Warnings:
missing keywords
missing bugs
missing homepage
missing repository

| N

4 Findings
Each issue has an assigned severity:

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e 'Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

issues are directly exploitable security vulnerabilities that need to be fixed.

41 Dapp May Force a Sign Approval Dialog Without Showing the Message to Be Signed i (v

Resolution

Addressed by always displaying the raw message to be signed to the user. This allows them to independently verify that this
is indeed what they want to sign off on. Additionally, the client provided the following statement and changesets addressing
the finding:

41 - always display raw transaction payload
Changesets:

¢ solflare-wallet/solflare-snap@ 9537098
¢ solflare-wallet/aptos-snap@ bss7c16

¢ solflare-wallet/sui-snap@ d28c4e3

Description

With the request.params.displayMessage parameter in requests to signTransaction and signAllTransactions the dapp controls if the
message to be signed is displayed to the user or not. Allowing the dapp to control if the data to be signed is displayed to the user
is dangerous as the dapp may silently ask for a signature to sign data the user did not intend to sign. This has potential to
undermine security controls and procedures implemented by MetaMask which generally enforce clarity of what data the user is
requested to sign.

Note that the snap as an extension to the MetaMask trust module should not have to trust the dapp that is requesting signature.

Examples

Affects all snaps under review.

Solflare Snap

..Japtos-snap/src/index.js:L39-L51

https://github.com/solflare-wallet/solflare-snap/commit/95370989eaf7a010099b17edf283d9bf34017a82
https://github.com/solflare-wallet/aptos-snap/commit/b857c16b873c730a38a6762a8c6f28b7b6c73c14
https://github.com/solflare-wallet/sui-snap/commit/d28c4e3bd1f33fb6d38da28f62ff965e27aa9b17

const { derivationPath, message, simulationResult = [], displayMessage = true } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);
assertInput(message);
assertIsString(message) ;
assertIsArray(simulationResult);
assertAllStrings(simulationResult);
assertIsBoolean(displayMessage);

const accepted = await renderSignTransaction(dappHost, message, simulationResult, displayMessage);
assertConfirmation(accepted);

..Japtos-snap/src/ui.js:L28-L33

text(host),

...(simulationResultItems.length > @ || displayMessage ? [divider()] : [1]),
...simulationResultItems,

...(displayMessage ? [copyable(message)] : [])

1)
}

Recommendation

In accordance with how MetaMask signing works, it is highly recommended to remove the displaymMessage toggle and consistently
enforce the message to be signed to be displayed. Else, there is no way for the user to verify if they are signing the correct
data/transaction.

4.2 CtrlIChar/Markdown Injection in renderSignTransaction, renderSignAllTransactions
(579 | ¢ Fixed

Resolution

The identified vulnerability has been remedied by excluding the simulation result from the dialog. It is essential to emphasize
that the extension should ideally generate the simulation result as a validated source of information. The transmission of this
information from a less trustworthy entity (even though it pertains to the dapp linked to the snap) to be displayed within the
secure context of a snap, influencing users to endorse raw data based on this simulation result, may inherently introduce
security risks. Eliminating the simulation result parameter from the RPC request effectively mitigates this specific injection
opportunity. Additionally, the client has furnished the subsequent statement and alterations to address the aforementioned
issue:

4.2 - fully remove simulation results. This removes the possibility to inject markdown or control characters in unsafe
places. Given the multi-entrypoint argument and the lack of a straightforward way to parse and simulate
transactions within the snap, we think raw transaction payloads provide an undeniable source of truth and let users
parse those transactions with external tools. It is on our roadmap to see how this can be improved in the future

Changesets:

¢ solflare-wallet/solflare-snap@ 9537098
¢ solflare-wallet/aptos-snap@ bss7c16

¢ solflare-wallet/sui-snap@ d28c4e3

Description

On certain occasions, the snap may need to present a dialog to the user to request confirmation for an action or data verification.
This step is crucial as dapps are not always trusted, and it's essential to prevent scenarios where they can silently sign data or
perform critical operations using the user’s keys without explicit permission. To create custom user-facing dialogs, MetaMask
provides the Snaps Ul package, equipped with style-specific components. However, some of these components have been found
to have unintended side-effects.

For instance, the text() component can render Markdown or allow for control character injections.

In the code snippet provided below, please note that request.params is considered untrusted. For example,
request.params.simulationResult[] mMay contain Markdown renderable strings or Control Characters that can disrupt the context of the
user-displayed message.

® request.params.origin IS validated via (new URL(dapporigin))?.host ; However, note, that the dapp may misrepresent the original
origin!
® requests.params.message is safely put into a copyable

® request.params.simulationResult is unchecked

Please also note that the user might decide whether to sign or reject the transaction based on the simulation that is being
displayed. This simulation result, however, is directly provided by the dapp which is less trusted than the metamask security
module/snap. This might lead to users signing data based on potentially false information if the dapp provides malicious
information. It should, therefore, be considered to generate the simulation information within the snap itself!

Examples

This affects all snaps under review.

Solflare Snap

https://github.com/solflare-wallet/solflare-snap/commit/95370989eaf7a010099b17edf283d9bf34017a82
https://github.com/solflare-wallet/aptos-snap/commit/b857c16b873c730a38a6762a8c6f28b7b6c73c14
https://github.com/solflare-wallet/sui-snap/commit/d28c4e3bd1f33fb6d38da28f62ff965e27aa9b17

® signTransaction

../solflare-snap/src/index.js:L41-L53

const { derivationPath, message, simulationResult = [], displayMessage = true } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);
assertInput(message);
assertIsString(message);
assertIsArray(simulationResult);
assertAllStrings(simulationResult);
assertIsBoolean(displayMessage);

const accepted = await renderSignTransaction(dappHost, message, simulationResult, displayMessage);
assertConfirmation(accepted);

../solflare-snap/src/ui.js:L19-L35

export function renderSignTransaction(host, message, simulationResult, displayMessage = true) {
const simulationResultItems = simulationResult.map((item) => text(item));

return snap.request({
method: 'snap_dialog',
params: {
type: 'confirmation’,
content: panel(|
heading('Sign transaction'),
text(host),
...(simulationResultItems.length > @ || displayMessage ? [divider()] : []),
...simulationResultItems,
...(displayMessage ? [copyable(message)] : [])
1)

® renderSignAllTransactions

../solflare-snap/src/ui.js:L51-L55

simulationResults[i].forEach((item) => uiElements.push(text(item)));
if (displayMessage) {
uiElements.push(copyable(messages[i]));

}

Sui Snap

../sui-snap/src/index.js:L41-L52

const { derivationPath, message, simulationResult []1, displayMessage = true } = request.params || {};
assertInput(derivationPath);

assertIsString(derivationPath);

assertInput(message);

assertIsString(message);

assertIsArray(simulationResult);

assertAllStrings(simulationResult);

assertIsBoolean(displayMessage);

const accepted = await renderSignTransaction(dappHost, message, simulationResult, displayMessage);
assertConfirmation(accepted);

../sui-snap/src/index.js:L64-L77

const { derivationPath, messages, simulationResults = [], displayMessage = true } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);

assertInput(messages);

assertIsArray(messages);

assertInput(messages.length);

assertAllStrings(messages);
assertIsArray(simulationResults);
assertInput(messages.length === simulationResults.length);
assertIsBoolean(displayMessage);

const accepted = await renderSignAllTransactions(dappHost, messages, simulationResults, displayMessage);
assertConfirmation(accepted);

Aptos Snap

..Japtos-snap/src/index.js:L39-L50

const { derivationPath, message, simulationResult = [], displayMessage = true } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);
assertInput(message);
assertIsString(message) ;
assertIsArray(simulationResult);
assertAllStrings(simulationResult);
assertIsBoolean(displayMessage);

const accepted = await renderSignTransaction(dappHost, message, simulationResult, displayMessage);
assertConfirmation(accepted);

..Japtos-snap/src/index.js:L62-L75

const { derivationPath, messages, simulationResults = [], displayMessage = true } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);

assertInput(messages);

assertIsArray(messages) ;

assertInput(messages.length);

assertAllStrings(messages);
assertIsArray(simulationResults);
assertInput(messages.length === simulationResults.length);
assertIsBoolean(displayMessage);

const accepted = await renderSignAllTransactions(dappHost, messages, simulationResults, displayMessage);
assertConfirmation(accepted);

Recommendation

Validate inputs. Encode data in a safe way to be displayed to the user. Show the original data provided within a pre-text or code
block (copyable). Show derived or decoded information (token recipient) as additional information to the user. If possible,
generate a trusted simulation result within the snap.

4.3 Insufficient Input Validation deriveKeyPair () wedum

Resolution

The client has issued the following statement:
Solflare Comment/Background

We have inspected the @metamask/key-tree library and made sure that all incorrect inputs throw errors. This is the
reason why we didn’t duplicate the checks. The reason why we supply full paths is because the APIs of our Wallet
forward full paths and to avoid sensitive splitting of paths in various places.

Solflare Resolution

We respect the recommendation, but due to architectural decisions up the stack, we would like to keep the
deriveKeyPair() API as-is.

Statement from the Assessment Team:

The principle of defense in depth necessitates comprehensive scrutiny across all layers of the system. It is unwise to rely
solely on a third-party library to handle error propagation, as you lack control over the underlying codebase. We strongly
advocate for the pervasive implementation of input validation mechanisms in adherence to secure coding practices, thereby
fortifying the defense in depth strategy. Given that this module pertains to wallet trust, it is imperative that coding standards
adhere to the highest levels of security, even if it results in redundant checks. Prioritizing safety over convenience is
paramount.

Regarding the API design, we acknowledge the intent for code reuse. Nevertheless, we propose the adoption of a well-
defined API structure that employs structured data instead of parseable strings. This approach enhances security and
simplifies maintenance, mitigating potential complications.

Description
path is checked for correct type: string

../solflare-snap/src/index.js:L23-L30

case 'getPublicKey': {
const { derivationPath, confirm = false } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);

assertIsBoolean(confirm);

const keyPair = await deriveKeyPair(derivationPath);

but is not checked for valid key derivation path format which may lead to unexpected outcomes or unhandled exceptions.

../solflare-snap/src/privateKey.js:L20-L20

const segments = path.split('/').slice(3).filter(Boolean);
For example, the function allows non alpha-num e-9+' , siip:x prefixes, or empty elements (
"m/44' /784" " .split("/").slice(3).filter(Boolean) => [])
Affects all snaps under review.

Recommendation

In general, the API design should be re-designed with the RPC functions receiving and validating only the last part of the key part,
enforcing the format to be valid for the use case.

4.4 Dapp May Suppress User Confirmation on Request to Extract Pubkey; May Extract Any Net-Key

Medium

Resolution

The client has issued the following statement:
Solflare Resolution

Given that arbitrary dApps can not suppress user confirmation (facilitated by the Wallet), that essential wallet flows
are enabled by the feature and the comparison with the security model of a hardware wallet, Solflare would like to
retain the functionality.

Statement from the Assessment Team:

As discussed, it’s crucial to recognize that the snap represents the trusted component in this configuration, while the dapp’s
trustworthiness may not always be guaranteed. It's imperative that your dapp does not assume control over the user’s trust
solely by displaying a confirmation message. The ideal approach should align with the security controls employed by the
MetaMask (MM) implementation, which consists of (1) establishing a connection between MM and the website and (2)
granting explicit approval for all accounts accessible by the website. This is in stark contrast to assuming that connecting the
snap to a dapp implicitly authorizes the dapp to enumerate all accounts managed by the snap. Such a deviation from the MM
design not only strays from user expectations but also introduces security concerns. It’s worth noting that we have also
reported this issue to the MM Development Team, as it necessitates a more comprehensive solution.

Recommendation: The dapp should not exert control over the presentation of dialogs to the user. Users must always remain
cognizant of every action occurring within the trust module boundary (the snap). There should be no provision for “silent”
execution of trust module actions, thereby ensuring transparency and user awareness at all times.

Description

With the request.params.confirm parameter in requests to signTransaction and signAllTransactions the dapp controls if the user is
requested confirmation to return the public key. If the dapp sets confirm=false the user will not be informed that the dapp
accessed their pubkey information (any account). Allowing the dapp to control if the user is asked to extract certain (derived)
information from the snap is intransparent and may leak sensitive information. Especially in a setting where the snap is
gatekeeping access to user specific information.

Examples

Affects all snaps under review.

../solflare-snap/src/index.js:L23-L36

case 'getPublicKey': {
const { derivationPath, confirm = false } = request.params || {};

assertInput(derivationPath);
assertIsString(derivationPath);
assertIsBoolean(confirm);

const keyPair = await deriveKeyPair(derivationPath);
const pubkey = bs58.encode(keyPair.publicKey);

if (confirm) {
const accepted = await renderGetPublicKey(dappHost, pubkey);
assertConfirmation(accepted);

}

Recommendation

The snap should strictly enforce user confirmation on the first time the pubkey is requested from an origin. A potentially
untrusted dapp (even though origin restricted; a dapp might turn malicious and should therefore be treated as untrusted) should
never be able to silently dictate what security measures be enabled with a snap request.

4.5 Production Builds Allow Development and Localhost Origins; Snap Does Not Enforce Transport
security Medium Partially Addressed

Resolution

The client has issued the following statement:

Solflare Comment/Background

When implementing RPC access restrictions, our assumption was that MetaMask will always forward valid domains
as the origin thus making nhttpii//. .solflare.con Not possible.

Solflare Resolution

Solflare will implement enforcing Transport Security by removing the option to proceed with the http protocol.
Solflare will be deploying a development build snap under a different package name that will allow the localhost
origin. This development snap does not need to be in the allow list and we can consume it purely through Flask. We
would need to keep both *solflare.com and *solflare.dev origins as these represent our production and staging
environments and we would like to retain the possibility of using the production snap with our staging
environment. The reason that subdomains are wildcarded is that we are going to make dApp specific changes and
deploy them on different subdomains (for example - a swap dApp would not want to have a widget with swap
inside of it). We don’t consider this a major risk as our processes around DNS management are very strict and
limited

Changesets:

o solflare-wallet/solflare-snap@ 749d2be
o solflare-wallet/aptos-snap@ eefiebs

o solflare-wallet/sui-snap@ 89s295f
Statement from the Assessment Team:

The core tenet here is a robust defense-in-depth strategy that operates on the premise of making no assumptions. We must
underscore the criticality of this principle in the context of trust module code. The same level of scrutiny should apply to
wildcard origins. The rationale is rooted in the potential vulnerabilities associated with subdomain takeover scenarios, such
as Azure instance compromise or DNS hijacking, among others. If an attacker can manipulate a subdomain, leading users to
visit a site like malicious.solflare.com, there is a substantial risk of successfully conducting phishing attacks, potentially
tricking users into permitting dapp actions on the snap. This not only jeopardizes user funds but also poses a severe threat to
your organization’s reputation. It falls squarely on your shoulders to ensure that such scenarios do not materialize through
robust security controls.

Recommendation: To mitigate these risks, it is imperative to maintain a curated list of official production hosts and validate
requests against these origins. For development builds of the extension, you may consider allowing dev and wildcard hosts.
However, when introducing new subdomains, it is crucial to manage them meticulously and refrain from merely deploying
new subdomain websites, as this approach can become challenging to control. Ultimately, the decision rests with your
organization regarding the level of risk tolerance. Based on experience, we would strongly advise against taking unnecessary
risks in this regard.

Description

The snaps RPC access is restricted to certain origins only. However, there is no logic that disables development/test domains
from origin checks in production builds.

This means, that, any localhost app is allowed to connect to snap (any port, not hardcoded to snap id; should not allow dev
domain). The origin enforcing regex allows non-transport security-enabled connections, i.e. http://wallet.solflare.com is allowed
while it should be enforced as https://wallet.solflare.com . Furthermore, the origin check allows potentially insecure subdomains,
i.6. https://beta.test.solflare.com . Additionally, invalid domains are allowed as well, i.e. http://..solflare.com

Examples

Solflare Snap

../solflare-snap/src/index.js:L7-L17

module.exports.onRpcRequest = async ({ origin, request }) => {
if (
lorigin ||
(
lorigin.match(/*https?:\/\/localhost:[0-9]{1,4}$/) &&
lorigin.match(/Ahttps?:\/\/(?:\S+\.)?solflare\.com$/) &&
torigin.match(/Ahttps?:\/\/(?:\S+\.)?solflare\.devS/)
)
) A
throw new Error('Invalid origin');

b

Aptos Snap

..Japtos-snap/src/index.js:L6-L15

module.exports.onRpcRequest = async ({ origin, request }) => {
if (
lorigin ||
(
lorigin.match(/*https?:\/\/localhost:[0-9]{1,4}S/) &&
torigin.match(/Ahttps?:\/\/(?:\S+\.)?risewallet\.dev$/)
)
) A
throw new Error('Invalid origin');

}

Sui Snap

https://github.com/solflare-wallet/solflare-snap/commit/749d2b03e94b6589779a3e01c5e8958f32b1d0ca
https://github.com/solflare-wallet/aptos-snap/commit/eef10b55dc31cfd9493ddd555d7b836b2342f5af
https://github.com/solflare-wallet/sui-snap/commit/898295fc3bb7c9d80d2c0803d9d382502a8640f9

../sui-snap/src/index.js:L8-L17

module.exports.onRpcRequest = async ({ origin, request }) => {
if (
lorigin ||

(
lorigin.match(/*https?:\/\/localhost:[0-9]{1,4}S/) &&
torigin.match(/*https?:\/\/(?:\S+\.)?elliwallet\.dev$/)

)
) A

throw new Error('Invalid origin');

}

Recommendation

Implement logic that removes development/localhost origin from the allow list for production builds. Employ strict checks on the
format of provided origin. Do not by default allow all subdomains.

4.6 Misleading HTML Entity and Function Name getPrivkey mm (Vs

Resolution

Addressed by following renaming traces of “private key”. Additionally, the client has issued the following statement:
Solflare Comment/Background

The index.html file is used for testing and naming hasn’t been updated since the snap was initially developed. This
file doesn’t compile into the bundle.

Solflare Resolution
Solflare will be renaming the function
Changesets:

¢ solflare-wallet/solflare-snap@ aa629cb
¢ solflare-wallet/aptos-snap@ esesbof

¢ solflare-wallet/sui-snap@ scbdeg7

Description

Several lines in the code refer to a private key while the functionality always returns a public key. l.e. getprivkey actually calls

getPublicKey .

../solflare-snap/index.html:L17-L21

const getPrivkeyButton = document.querySelector('button.getPrivkey')

connectButton.addEventListener('click', connect)
getPrivkeyButton.addEventListener('click', getPrivkey)

../solflare-snap/index.html:L30-L50

async function getPrivkey () {
try {
const response = await ethereum.request({
method: 'wallet_invokeSnap',
params: {
snapld,
request: {
method: 'getPublicKey',
params: {
derivationPath: "'m/44'/501'/06'/0"' ",
confirm: true
}
}
}
1)

console.log(response) ;
} catch (err) {
console.error(err)
alert('Problem happened: ' + err.message || err)

}
}

Affects all snaps under review.

Recommendation

Never return or extract a private key from the snap. Rename the variables in code to accurately reflect what type of data is being
handled.

4.7 Use of Outdated snap.config. json Instead of snap.config.js crm (Ve

https://github.com/solflare-wallet/solflare-snap/commit/aa629cbd1ab8ce1ab22d521b5958d46dd7ae5d4c
https://github.com/solflare-wallet/aptos-snap/commit/e603b9f89bb35f50bfdd9872769c7ca00fb702a3
https://github.com/solflare-wallet/sui-snap/commit/5cbd0971daa49bcaa8817d867553c194bb0d469d

Resolution

Addressed by switching to the snap.config.js . Additionally, the client has issued the following statement:
Solflare Resolution
Solflare will be moving to snap.config.js

Changesets:

o solflare-wallet/solflare-snap@ 5228b37
¢ solflare-wallet/aptos-snap@ 62ec7b4

¢ solflare-wallet/sui-snap@ 3426723

Description

According to the MetaMask-CLI Documentation the use of snap.config.json is discouraged and projects should switch to
snap.config.js instead.

4.8 Inconsistent or Blank Fields in package. json gmm

Resolution

Addressed by switching to the snap.config.js . Additionally, the client has issued the following statement:
Solflare Resolution
Solflare will be adding missing information

Changesets:

¢ solflare-wallet/solflare-snap@ f91a27d
o solflare-wallet/aptos-snap@ cbe1es1

o solflare-wallet/sui-snap@ 9819463

Description

The package.json file serves as a critical source of information for users, developers, and security analysts. Neglecting to provide
complete and accurate metadata in this file can lead to misunderstandings, vulnerabilities, and potential exploitation. By
meticulously filling out fields like bugs , homepage , repository , author , and description , developers can enhance transparency,
facilitate collaboration, and minimize security risks associated with incomplete or misleading project information.

../solflare-snap/package.json:L2-L13

"name": "@solflare-wallet/solana-snap",
"version": "1.0.0",
"description": ""
"main”: "src/index.js",
"scripts": {
"start": "mm-snap build && mm-snap serve",
"build": "mm-snap build",
"deploy": "npm run build && npm publish"
iF
“author": ""
"license": "ISC",
"files": [

Affects all snaps under review.

Recommendation

Provide meta information for bugs, homepage, repository, author (non-blank), description (non-blank).

4.9 Consider Using @metamask/detect-provider

Resolution

The client has issued the following statement:
Solflare Comment/Background

The index.html file is used for testing and naming hasn’t been updated since the snap was initially developed. This
file doesn’'t compile into the bundle.

Solflare Resolution

Since this is just a testing file and we use proper detection mechanisms in the Wallet, Solflare will not implement a
fix in the helper file.

https://github.com/solflare-wallet/solflare-snap/commit/5228b37414b93ec81835d1dc0e8e8a32f8c84b1c
https://github.com/solflare-wallet/aptos-snap/commit/62ec7b45b4cbd54b9747318447610283eda8ea00
https://github.com/solflare-wallet/sui-snap/commit/34207231b655bc1f834cecf15e327bffd19390c2
https://github.com/MetaMask/snaps/tree/main/packages/snaps-cli#configuration
https://github.com/solflare-wallet/solflare-snap/commit/f91a27d90dae692f26691f3d27efb6afa58a2e8e
https://github.com/solflare-wallet/aptos-snap/commit/cb61e41373baa06d8155ed0559f6d0392012ffe5
https://github.com/solflare-wallet/sui-snap/commit/98194638d1028020fc6776874059fac07a202b79

Description
Consider using the Metamask provided library emetamask/detect-provider for inpage metamask/flask detection.

../solflare-snap/index.html:L23-L28

async function connect () {
await ethereum.request({
method: 'wallet_requestSnaps',
params: { [snapId]: {} }
1)
}

410 Consider Prefixing RPC Calls With solana_*, sui_*, aptos_x*

Resolution

The client has issued the following statement:
Solflare Comment/Background

The naming convention we have adopted was based on the structure of snap method invocations. Namely, when a
snap invocation is happening, the wallet_invokeSnap method is called with a strictly specified snapld (which we
consider scope) and the request method. Our thinking is that prefixing the methods in addition to explicitly stating
the snapld might lead to unnecessary duplication.

Solflare Resolution

Solflare will not implement prefixes to both avoid naming duplication and because our wallets share a common
architecture/codebase and are scoped by the snapld, we would like to avoid needing to call different methods for
different wallets

Description

APIs (Application Programming Interfaces) play a crucial role in modern software development, enabling interoperability and
communication between different software components. One often overlooked aspect of APl design is the naming of API
functions. Poorly named API functions can lead to security vulnerabilities and confusion, compromising user information integrity
and security.

Consider prefixing the RPC method handlers with the respective protocols they are serving.

411 Consider Moving to TypeScript

Resolution

The client has issued the following statement:
Solflare Comment/Background

Only comment is that we began developing snaps before there was a way to write them in TypeScript. Also, the
initial audit was done on a JavaScript codebase and in the benefit of reducing the gap audit and saving time we
opted to stay in JavaScript. We definitely recognize all the TypeScript benefits, especially as most of our stack is
written in TypeScript.

Solflare Resolution

It is definitely on our roadmap to migrate to TypeScript.

Description

JavaScript, as a dynamically typed language, lacks the stringent type checks and static analysis that can catch a wide range of
programming errors during compile time. While JavaScript is widely adopted due to its simplicity and ubiquity, it poses certain
security challenges that could be mitigated by transitioning to TypeScript.

1. Type-Related Vulnerabilities: JavaScript’s loose typing allows developers to perform operations on variables without explicit
type declarations. This freedom can inadvertently lead to vulnerabilities such as type coercion attacks, where an attacker
manipulates input data to trigger unintended behaviors. TypeScript enforces strong typing, which can catch type-related
issues early in the development process, reducing the risk of such vulnerabilities.

2. Null and Undefined Errors: JavaScript’s permissiveness with null and undefined values can lead to runtime errors and crashes.
Insecure access to null or undefined properties can open doors to injection attacks, privilege escalation, or application
crashes. TypeScript’s strict null checks force developers to handle these cases explicitly, minimizing the chances of
overlooking critical input validation

3. Misconfigured Objects and Inheritance: JavaScript’s prototype-based inheritance can lead to unforeseen object interactions
and security breaches when not carefully managed. TypeScript’s class-based object-oriented approach enhances code
organization and provides better control over inheritance, reducing the likelihood of unexpected security vulnerabilities.

4. Reduced Maintenance Complexity: Maintaining a JavaScript codebase can become increasingly complex as a project grows.
With TypeScript, the inclusion of type annotations and stricter rules aids in code comprehension, refactoring, and identifying
security vulnerabilities. This streamlined development process indirectly contributes to a more secure software ecosystem.

Remember, this project is implementing an extension to the MetaMask Trust Module. As such, we recommend implementing
compile time security controls by moving the codebase to TypeScript with strict linting rules enabled.

Appendix 1- Files in Scope

This review covered the following files:

File

aptos-snap/index.html
aptos-snap/logo.svg
aptos-snap/src/index.js
aptos-snap/src/privateKey.js
aptos-snap/src/ui.js
aptos-snap/src/utils.js
sui-snap/index.html
sui-snap/logo.svg
sui-snap/src/index.js
sui-snap/src/privateKey.js
sui-snap/src/ui.js
sui-snap/src/utils.js
solflare-snap/index.html
solflare-snap/logo.svg

solflare-snap/src/index.js

SHA-1 hash

5e3a44cb5b21a1d500aff78c6691813750215952
7e9cabbeddd17aef8b58abf8f77bf631e1e1fbf2
cee7eb6ch64a8df7e9739d79f05de5a9a9d70adb6
b31c752080e5a8ab20a7bba74845a52fde37aa7b
1242056e76afe38d9d086a82d92deBf939672682
3bbabe810a3ff1f28e7a3d75a2a2bcbb10adb112
e23de59c3albaf10b1293ff37a751336d17a7901
2ad0adBe48b5371ccbb2f87db5850c5f379¢c9164
956e011716598fb3127254f3eec87f79ce662823
38d4814835¢c1c70e7f6a664e5054d69002576e21
1242056e76afe38d9d086a82d92deBf939672682
3bbabe810a3ff1f28e7a3d75a2a2bcbb10adb112
9128e7eb26165bb90d7deb50194e39b68f3ff32d
6041863b433142dc5f14d9477¢c2555e0ed383¢c8f

4497a4bBb8a53929aae134964ad148904cc77b67

solflare-snap/src/privateKey.js = 42818baff1e78e9fc83e3202cc15a35b7a17e78d

solflare-snap/src/ui.js 1242056e76afe38d9d086a82d92ded 939672682

solflare-snap/src/utils.js 41e9e87cdd5ae877e2d579e51e2620e4dded160a

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of

third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY (consensys

https://consensys.io/

