
Argent Account & Argent Multisig
Starknet Transaction V3 Updates

Date January 2024

Auditors
Heiko Fisch,
George Kobakhidze

1 Executive Summary
This report presents the results of our engagement with Argent to review updates in Argent Account and Argent Multisig for
Starknet Transaction v3.

The review was conducted from January 15–23, 2024, by George Kobakhidze and Heiko Fisch. A total of 14 person-days were
spent. Due to Argent’s time constraints regarding the release, potential �indings were reported informally during the �irst week of
the engagement, with the client implementing �ixes and improvements as discussed. At the end of the week, we reviewed these
changes and �inished the assessment. The report was compiled in the �irst half of the following week.

Argent is a provider of wallets in the Ethereum ecosystem, including its L2s. This audit focused on their smart contract wallet
offering for Starknet, Argent Account (v0.3.1), and their multisig, Argent Multisig (v0.1.1), as well as the auxiliary libraries used for
these. Starknet recently introduced the new transaction version 3, which Argent wanted to support. We had already reviewed an
earlier version of the Argent Account and Multisig for Starknet, and it was our pleasure to work with Argent again to review the
changes that were made to support the new Starknet transactions, along with a few smaller improvements that had become
possible due to new releases of the Cairo language.

As last time, we found the code exceptionally well-written, -documented, and extensively tested. All our �indings, as detailed in
Section 4, have been �ixed in the �inal version we considered in this audit with the commit hash
3b5e45cf28113f7389a716ef9faabfbd79ce45f9 .

Users of Argent Account should be aware that the time window to react to a malicious Guardian’s takeover attempt is only one
week and should take appropriate precautions.

2 Scope
We reviewed the client’s repository at the commit hash cb01c6a3c8f343ef195ebb7094361b674fe43a37 . All �indings that we identi�ied have
been �ixed in the version with commit hash 3b5e45cf28113f7389a716ef9faabfbd79ce45f9 . Only Cairo �iles – and most of them – have been
in scope for this audit; a detailed list, together with their SHA-1 hashes in the initial and �inal version considered in this
engagement, can be found in the Appendix. Naturally, we focused on the changes that have been introduced since our last
review.

3 System Overview
Since the primary focus of this review was the changes introduced with new functionality available in Starknet and Cairo, they
will be discussed �irst.

3.1 Transaction V3

The main anticipated change with this update is the support for v3 transactions. As can be found in Starknet documentation and
the relevant SNIP-8, this new transaction type will allow users to utilize STRK as the gas token for transaction fees. As a result,
some changes had to be made to Argent smart contracts, speci�ically in the functions validating invoking, deploying, and
declaring transactions.

Additionally, since Argent accounts have Guardian addresses that can spend a limited amount of funds for transaction fees
without approval of the owner during escapes, new logic had to be introduced to limit that for v3 transactions as well. Namely,
v3 transactions introduce concepts such as max_price_per_unit and max_amount for L1 and L2 gas separately, as well as a tip for L2
gas, whereas v1 transactions just have a singular value max_fee . Therefore, new limits are needed to restrict the amount of gas a
malicious Guardian can spend with a v3 transaction.

3.2 New Cairo Starknet Contract Functionalities

Along with new transaction types, Cairo Starknet contracts can now utilize new features that allow for a better developer
experience. These include:

Usage of selector! . This allows for easier access to a starknet_keccak of a string where needed, such as when computing
selectors of functions and hashes for signature data.

Usage of events. With this new version, events can now be emitted from a contract with a simple self.emit , as opposed to
calling them like a function as in previous versions.

Usage of self . Now smart contracts may utilize a special keyword called self that allows for easier access for a contract to
interact with its internal functions, state variables, events, and more.

1 Executive Summary

2 Scope

3 System Overview

3.1 Transaction V3

3.2 New Cairo Starknet Contract
Functionalities

3.3 General System Overview

4 Findings

4.1 Lack of Fee Limits for V3
Transactions Major ✓ Fixed

4.2 Newer Cairo Version Available
Minor ✓ Fixed

4.3 Discrepancy Between Actual
OUTSIDE_EXECUTION_TYPE_HASH

and Comments Minor ✓ Fixed

4.4 Self-Written Versions of
get_execution_info and

get_tx_info ✓ Fixed

4.5 __validate_deploy__
Function Doesn’t Have Its Own
Transaction Version Check
✓ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

AUDIT S FUZZIN G SC R IBBLE ABO UT

https://www.argent.xyz/
https://github.com/argentlabs/argent-contracts-starknet-private/tree/3b5e45cf28113f7389a716ef9faabfbd79ce45f9
https://github.com/argentlabs/argent-contracts-starknet-private/tree/cb01c6a3c8f343ef195ebb7094361b674fe43a37
https://github.com/argentlabs/argent-contracts-starknet-private/tree/3b5e45cf28113f7389a716ef9faabfbd79ce45f9
https://docs.starknet.io/documentation/architecture_and_concepts/Network_Architecture/transactions/#transaction_versioning
https://github.com/starknet-io/SNIPs/blob/main/SNIPS/snip-8.md
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

3.3 General System Overview

The rest of the system functionality outside of the changes remains the same as in the last version; a description may be found
in our previous audit report here.

4 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be �ixed.

4.1 Lack of Fee Limits for V3 Transactions Major ✓ Fixed

Resolution

Fixed in PR-266 by introducing limits on the v3 transaction fees through two separate maximums:

MAX_ESCAPE_TIP_STRK = 1 STRK which limits the result of multiplying tip * L2_GAS.max_amount .

MAX_ESCAPE_MAX_FEE_STRK = 50 STRK which limits the sum of all of the following:
L1_GAS.max_price_per_unit * L1_GAS.max_amount ,

L2_GAS.max_price_per_unit * L2_GAS.max_amount ,

tip * L2_GAS.max_amount , the tip described above.

Description

Starknet transactions have �ields to specify the maximum amount of fees the sequencer may take. For v1 transactions, this is just
one �ield with the name max_fee and unit WEI (i.e., 10^{-18} ETH). For the newly introduced v3 transactions, the situation is a bit
more complicated. First of all, there are two types of fees: L1_GAS and L2_GAS . The former is needed to cover the gas costs on L1
that the transaction produces, the second is supposed to cover the L2 costs and will be utilized in the upcoming fee market. For
each of these two fee types, a transaction speci�ies the max_amount and the max_price_per_unit . In addition to that, there is also a tip

�ield to help facilitate the market. It is noteworthy that the max_price_per_unit �ields – even for L1_GAS – and the tip will be speci�ied
in 10^{-18} STRK/gas. Another point worth highlighting is that, as Starknet has built-in account abstraction, the fee for a
transaction is paid by the account.

Currently, the only sequencer is operated by StarkWare and charges a fair price for the L1 costs. (And L2 fees are not being
collected yet.) Hence, even if a transaction speci�ies a very high fee limit, the sequencer takes only what is really needed and
not everything that the transaction limit(s) would allow. For the sake of brevity, let us call such a sequencer “nice”. In a more
decentralized Starknet future, there will probably be more sequencers, and they may not necessarily be nice, meaning they may
take more in fees than what the L1 costs demand of them. Also, it is not impossible that the rules for the StarkWare sequencer
change at some point in the future (although it seems reasonable to assume that this would be properly announced). But – to
summarize this discussion – currently there is only sequencer, and it is nice. The attack we describe below requires a “non-nice”
sequencer – and, as we will explain shortly, a malicious Guardian – and is therefore, at the time of writing this report, not
feasible, even assuming the Guardian acts with malice.

As explained in more detail in the System Overview of our previous report, there is an escape mechanism which (1) allows users
to reclaim control of their account if the Guardian fails to cooperate and (2) allows Guardians to assign a new owner if the
original owner lost access to their key. Crucially and unlike other account activities, escape-related actions require only a single
signer. Hence, a general attack scenario that the account should implement protective measures against is a malicious Guardian
trying to drain the account by signing an escape transaction with an excessive fee limit. A similar situation arises if, instead of
the Guardian being malicious, a third party comes into possession of the owner’s private key, but to keep the discussion more
concise, we’ll consider this subsumed under “malicious Guardian.” As mentioned above, such an attack is not possible with a
nice sequencer, but – ideally – the account contract should not rely on that.

Examining the relevant code, we see that the fee restriction logic for v1 transactions – which is known from earlier versions of
the contract – is still present:

src/account/argent_account.cairo:L47-L48

/// Limits fee in escapes
const MAX_ESCAPE_MAX_FEE: u128 = 50000000000000000; // 0.05 ETH

src/account/argent_account.cairo:L772-L774

} else if tx_info.version == TX_V1 || tx_info.version == TX_V1_ESTIMATE {
 // other fields not available on V1
 assert(tx_info.max_fee <= MAX_ESCAPE_MAX_FEE, 'argent/max-fee-too-high');

And there is a limit on the total tip, i.e., tip * L2_GAS.max_amount , for v3 transactions:

src/account/argent_account.cairo:L49-L50

https://consensys.io/diligence/audits/2023/06/argent-account-multisig-for-starknet/#system-overview
https://github.com/argentlabs/argent-contracts-starknet-private/pull/266/
https://consensys.io/diligence/audits/2023/06/argent-account-multisig-for-starknet/#system-overview

/// Limits tip in escapes
const MAX_ESCAPE_TIP: u128 = 1_000000000000000000; // 1 STRK

src/account/argent_account.cairo:L758-L771

// Limit the maximum tip while escaping (max_fee returns 0 on TX_V3)
let max_l2_gas: u64 = loop {
 match tx_info.resource_bounds.pop_front() {
 Option::Some(r) => { if *r.resource == 'L2_GAS' {
 break *r.max_amount;
 } },
 Option::None => {
 // L2_GAS not found
 break 0;
 }
 };
};
let max_tip = tx_info.tip * max_l2_gas.into();
assert(max_tip <= MAX_ESCAPE_TIP, 'argent/tip-too-high');

However, no limit is imposed on the amount of STRK for L1_GAS or L2_GAS . Regarding L1_GAS , this means that a malicious
Guardian could specify an excessive max_price_per_unit in an escape transaction and – with the help of a non-nice sequencer –
drain the account’s entire STRK balance. Since the sequencer can pocket the difference between max_price_per_unit and what is
really needed on L1, it is also conceivable that the two parties collude for an attack.

For L2_GAS , the situation is more di�icult to assess because the fee market has not been implemented yet. It is very well possible
that the “base fee” will be set by the network – similar to the base fee on Ethereum, see EIP-1559. In this case, constraining only
the tip, as is currently the case, would be su�icient to prevent the L2_GAS part of this kind of attack, as long as one is comfortable
with risking to pay any fee the market demands. Nevertheless, as the details of the L2 fee mechanism have not yet been
speci�ied, we advise caution.

Recommendation

For both L1_GAS and L2_GAS , the amount of STRK that can be spent on fees should be limited, similar to the limit on max_fee for v1
transactions. There are several different – and equally viable – ways to do this: separately for L1_GAS and L2_GAS or together;
including the tip in a (higher) limit or handling it separately.

One aspect of the L2 fees that has, to the best of our knowledge, not been decided yet is whether the tip will be considered
part of the max_price_per_unit (similar to EIP-1559) or if it can be on top of that. Hence, to be on the safe side, the latter should be
considered possible, and the tip should not be left unconstrained.

4.2 Newer Cairo Version Available Minor ✓ Fixed

Resolution

When we informed the client about this, we learned that they had already updated the Cairo version on the development
branch to 2.4.3 (commit 72c14f0), so they were aware of this.

Description

The Cairo version used in the commit hash speci�ied for the audit is 2.4.0. Cairo receives updates in quick succession, and, at
the time of conducting the review, newer versions are available. Version 2.4.1, in particular, comes with some bug �ixes.

Recommendation

We recommend utilizing the latest available Cairo version or at least a version without known bugs.

4.3 Discrepancy Between Actual OUTSIDE_EXECUTION_TYPE_HASH and Comments Minor ✓ Fixed

Resolution

Fixed in PR-266 by adjusting the comments, removing the OutsideCall struct, and using selector!() to directly calculate the
OUTSIDE_EXECUTION_TYPE_HASH instead of using a hardcoded constant.

Description

In the outside_execution.cairo �ile, we have a hardcoded value
const OUTSIDE_EXECUTION_TYPE_HASH: felt252 = 0x11ff76fe3f640fa6f3d60bbd94a3b9d47141a2c96f87fdcfbeb2af1d03f7050 . The comment above it indicates

that to derive it, we need to use the hash
H('OutsideExecution(caller:felt,nonce:felt,execute_after:felt,execute_before:felt,calls_len:felt,calls:Call*)') , where “H” would be the
starknet_keccak (which is con�irmed with other values):

src/common/outside_execution.cairo:L33-L34

// H('OutsideExecution(caller:felt,nonce:felt,execute_after:felt,execute_before:felt,calls_len:felt,calls:Call*)')
const OUTSIDE_EXECUTION_TYPE_HASH: felt252 = 0x11ff76fe3f640fa6f3d60bbd94a3b9d47141a2c96f87fdcfbeb2af1d03f7050;

However, doing the above hash results in the value 0x28df6ab27eb241200f2ba2177e1ad2c81bd92b71bfd8b8fa40ced4d3b55d66d . If we add the Call

struct to the string as well, we get

https://eips.ethereum.org/EIPS/eip-1559
https://github.com/argentlabs/argent-contracts-starknet-private/commit/72c14f012a16db58a3aad403189e6d83e357c66d
https://github.com/argentlabs/argent-contracts-starknet-private/pull/266/

'OutsideExecution(caller:felt,nonce:felt,execute_after:felt,execute_before:felt,calls_len:felt,calls:Call*)Call(to:felt,selector:felt,calldata_len:felt,ca
lldata:felt*)'

, which when hashed yields 0x2838a3633cc7cd97bbf5b9f800d77b6d891154b8abdf6f41132c40e5a9ace2c that also doesn’t match.

Finally, if we observe the function hash_outside_execution , we can see that it computes the selector with the string
'OutsideExecution(caller:felt,nonce:felt,execute_after:felt,execute_before:felt,calls_len:felt,calls:OutsideCall*)OutsideCall(to:felt,selector:felt,callda
ta_len:felt,calldata:felt*)'

:

src/common/outside_execution.cairo:L101-L103

If we take this string and hash it, we indeed get 0x11ff76fe3f640fa6f3d60bbd94a3b9d47141a2c96f87fdcfbeb2af1d03f7050 . However, this does ask
for OutsideCall in the OutsideExecution struct, whereas the code may suggest it should be just Call .

Recommendation

While there is no real impact as the hash constant is the correct one, it would be bene�icial to get the comments and the code in
sync with the intended values.

4.4 Self-Written Versions of get_execution_info and get_tx_info ✓ Fixed

Resolution

Fixed in PR-266 by using the get_execution_info and get_tx_info functions from the starknet package.

Description

Functions that retrieve the execution and transaction information have been implemented in transaction_version.cairo :

src/common/transaction_version.cairo:L37-L45

#[inline(always)]
fn get_execution_info() -> Box<starknet::info::v2::ExecutionInfo> {
 starknet::syscalls::get_execution_info_v2_syscall().unwrap_syscall()
}

#[inline(always)]
fn get_tx_info() -> Box<starknet::info::v2::TxInfo> {
 get_execution_info().unbox().tx_info
}

However, the same functionality is provided by the starknet package, which is used anyway.

Recommendation

Although there is no difference in behavior, we recommend utilizing the functions from Cairo’s starknet package. The self-written
versions can then be removed from transaction_version.cairo .

4.5 __validate_deploy__ Function Doesn’t Have Its Own Transaction Version Check ✓ Fixed

Resolution

Fixed in PR-266 by decoupling the transaction checks through the introduction of assert_correct_deploy_account_version() check.

Description

In the current version of Starknet, accounts have required functions that validate speci�ic types of transactions, such as INVOKE ,
DECLARE , and DEPLOY_ACCOUNT , as seen here.

In argent_account.cairo there are indeed those functions, where it is also checked that the transaction going through those
functions is compliant with speci�ic transaction parameters:

src/account/argent_account.cairo:L202-L205

fn __validate__(ref self: ContractState, calls: Array<Call>) -> felt252 {
 assert_caller_is_null();
 let tx_info = get_tx_info().unbox();
 assert_correct_invoke_version(tx_info.version);

src/account/argent_account.cairo:L329-L331

fn __validate_declare__(self: @ContractState, class_hash: felt252) -> felt252 {
 let tx_info = get_tx_info().unbox();
 assert_correct_declare_version(tx_info.version);

src/account/argent_account.cairo:L337-L341

selector!(
 "OutsideExecution(caller:felt,nonce:felt,execute_after:felt,execute_before:felt,calls_len:felt,calls:OutsideCall*)OutsideCall(to
)

https://github.com/argentlabs/argent-contracts-starknet-private/pull/266/
https://github.com/starkware-libs/cairo/blob/6f359c1c6f081f76abe0721c6b8897e6e29ab9ae/corelib/src/starknet/info.cairo
https://github.com/starkware-libs/cairo/blob/6f359c1c6f081f76abe0721c6b8897e6e29ab9ae/corelib/src/starknet/info.cairo
https://github.com/argentlabs/argent-contracts-starknet-private/pull/266/
https://docs.starknet.io/documentation/architecture_and_concepts/Network_Architecture/transactions/#transaction_versioning

fn __validate_deploy__(
 self: @ContractState, class_hash: felt252, contract_address_salt: felt252, owner: felt252, guardian: felt252
) -> felt252 {
 let tx_info = get_tx_info().unbox();
 assert_correct_invoke_version(tx_info.version);

The checks:

src/common/transaction_version.cairo:L14-L28

#[inline(always)]
fn assert_correct_invoke_version(tx_version: felt252) {
 assert(
 tx_version == TX_V3 || tx_version == TX_V1 || tx_version == TX_V3_ESTIMATE || tx_version == TX_V1_ESTIMATE,
 'argent/invalid-tx-version'
)
}

#[inline(always)]
fn assert_correct_declare_version(tx_version: felt252) {
 assert(
 tx_version == TX_V3 || tx_version == TX_V2 || tx_version == TX_V3_ESTIMATE || tx_version == TX_V2_ESTIMATE,
 'argent/invalid-declare-version'
)
}

However, while __validate__ and __validate_declare__ have their own transaction check, namely assert_correct_invoke_version and
assert_correct_declare_version , __validate_deploy__ reuses the same check as the INVOKE transaction – assert_correct_invoke_version .

Recommendation

While that is technically �ine (although the documentation isn’t consistent in all places about this) as it indeed does support v3
and v1 transactions, it would be bene�icial to have a separate check just for the DEPLOY_ACCOUNT transactions for better
maintainability of the codebase.

Appendix 1 - Files in Scope
This audit covered the following �iles:

File SHA-1 hash in initial version (cb01c6a) SHA-1 hash in �inal version (3b5e45c)

src/account/argent_account.cairo 6a6ff6fcea1c8886bb7fea8bd5c86b9636dbbe27 d04bd21dbe98b492c8942e52c4a03270288599d9

src/account/escape.cairo 712bbc5ab869e52a0dd8a8fb12648b1c205b219a 712bbc5ab869e52a0dd8a8fb12648b1c205b219a

src/account/interface.cairo c99207364b2db53c102039e082ce6ea6b7680d71 c99207364b2db53c102039e082ce6ea6b7680d71

src/common/account.cairo b789ff06b8c72637bcd3a7564ab2c98a348f2a9d b789ff06b8c72637bcd3a7564ab2c98a348f2a9d

src/common/array_ext.cairo f89e6a0a3c2eb4f10f38581b27ee533206787499 f89e6a0a3c2eb4f10f38581b27ee533206787499

src/common/asserts.cairo a14088bab4704ac039234391c51f32fb3b22ceee a14088bab4704ac039234391c51f32fb3b22ceee

src/common/calls.cairo 9e87de8b777550a42597e670f09a1928c0fff663 9e87de8b777550a42597e670f09a1928c0fff663

src/common/erc165.cairo a16e4692ea9367b5b1ad768fd23518c144d227bd a16e4692ea9367b5b1ad768fd23518c144d227bd

src/common/outside_execution.cairo 8f2bca22d117b94ac53e5519b9615d320caa0965 666b40d3dd035d5e1df6515eb994ace9a5a822e6

src/common/transaction_version.cairo 104db449a6b4705d31f2ee94bef708cae14c56f0 8b0d320ed245d7b176d7e08b702f20d63e8605b1

src/common/upgrade.cairo 575f17add2ef5d9a1dd21bfc3d129bf15ecd5216 575f17add2ef5d9a1dd21bfc3d129bf15ecd5216

src/common/version.cairo 673665ed1a78a5f7f2508bf0b5dfbc1c739082b6 673665ed1a78a5f7f2508bf0b5dfbc1c739082b6

src/multisig/argent_multisig.cairo 9d0e563882c1668fea1e021f3e18d41f7a3e5740 a67b25a848f469aa9b76f4aa9fddb0daacc2fb13

src/multisig/interface.cairo 7ee3f16ed71bc264e3cc84a7baf05854ae049ded 7ee3f16ed71bc264e3cc84a7baf05854ae049ded

src/multisig/signer_signature.cairo e30651ba51289e1aeaed0ed8a6608a874ba7979d e30651ba51289e1aeaed0ed8a6608a874ba7979d

Appendix 2 - Disclosure
Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens
are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the
Reports in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Speci�ically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquanti�iable risks as the Solidity language itself remains under development and is
subject to unknown risks and �laws. The review does not extend to the compiler layer, or any other areas beyond speci�ied code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and
CD. Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web
sites' owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that
Consensys and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as
described below, a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses
the content on that Web site or the operator or operations of that site. You are solely responsible for determining the extent to
which you may use any content at any other web sites to which you link from the Reports. Consensys and CD assumes no
responsibility for the use of third-party software on the Web Site and shall have no liability whatsoever to any person or entity
for the accuracy or completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

https://consensys.io/

