@Diligence

FUZZING SCRIBBLE ABOUT

MSQ Snap

1 Executive Summary
1.1 Remarks

1.2 Engagement

2 Scope

2.1 Objectives

3 Snap Outline

3.1 Capabilities

4 Findings

4.1 Public RPC Methods and
Consent Management

v Fixed

4.2 Keypairs Generated by Dapps
Might Be Unrecoverable Which
Could Result in Loss of Funds

v Fixed

4.3 Timestamp Logic Flaws in
Snap’s Caching Mechanism

Medium v Fixed

4.4 Protected (Administrative
Origin) RPC Methods and Consent

Management Medium | ¢ Fixed

4.5
Protected_handleldentityLogin -

Unchecked withIdentityId
Medium ¢ Fixed

4.6

Protected_handleAddAssetAccount

- Should Verify name , symbol
Matches assetId 'Medium
v Fixed

4.7 Entropy / Signature Handling
& Hardening Medium | ¢ Fixed

4.8 makeAvatarSvgCustom -
Potential SVG HTML Injection,

React innerHTML | Medium
v Fixed

4.9 CtrlChar/Markdown Injection
Medium Partially Addressed

4.0 Shared/hexToBytes -
Incorrect Hex String Handling

m v Fixed

411 Unused Imports | ¢ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

Date March 2024

Valentin Quelquejay,
Martin Ortner

Auditors

1 Executive Summary

This report presents the results of our engagement with the MSQ to review the MSQ Snap & dApp.

The review was conducted over two and a half weeks, from March 11, 2024 to March 27, 2024. A total of 2x13 person-days were
spent.

The MSQ project is composed of three components: a MetaMask Snap, a properietary dApp hosted on the Internet Computer,
and a client library. The Snap is specifically designed for interactions with the Internet Computer (ICP), while the proprietary
dApp extends the Snap’s capabilities. MSQ is crafted for seamless integration with external dApps, facilitated by the client library.
It offers a range of functionalities, including authorization and payments.

11 Remarks

Users interacting with web services that are integrated with MSQ can authenticate within these services using origin-bound
identities deterministically derived from their MetaMask root key. As long as users maintain possession of their seed phrase, they
can recover access to any previously derived identities. This setup enables users to sign arbitrary messages from web services
using these identities, thus allowing for interactions with Internet Computer canisters. Additionally, users can utilize their MSQ-
managed assets to pay for goods and services.

To use their identities, users need to explicitly connect the Snap to external dApps by interacting through the management dApp.
Thus, they need to give consent for the Snap to use their derived identity on a per-origin basis. Yet, note that once connected to
a dApp, dApps can sign arbitrary data without requiring explicit user consent, meaning it’s crucial for users to trust the dApps
they authorize (see issues issue 4.1 and issue 4.4 for additional details).

The client provided a list of key risks, which we reviewed and concluded are acceptable given the current implementation. The
Snap utilizes the snap_getentropy function to generate entropy for different origins, ensuring that the generated entropy is safe and
provides an adequate level of randomness. Additionally, Snap storage is encrypted, protecting data from unauthorized access. To
mitigate supply-chain attacks, only trusted dependencies should be used. Furthermore, dependencies should be kept to a
minimum, and fixed versions should be used. Finally, the Snap should protect the user at all times by ensuring that the user gives
explicit consent to any privileged action (with the caveat specific to the ICP technology explained above).

1.2 Engagement

The collaboration between our team and the client team has demonstrated a cooperative and committed approach to security
principles. The codebase shows organization and clarity, with thorough inline documentation enhancing readability and
maintainability. Notably, TypeScript is utilized for compile-time type enforcement, alongside zod -based runtime type validation
and input sanitization, aligning well with recommended practices for Snaps development.

Additionally, the client has taken proactive measures to reduce the attack surface and mitigate risks to users. The client managed
to implement a good tradeoff between security and usability addressing inherent requirements to ICP protocol interaction. They
have shown responsiveness by implementing changesets to mitigate identified vulnerabilities promptly, and fixing similar issues
even beyond what’s been shared with them initially.

2 Scope

The review focused on the commit hash 6f5b16dddf99624e2874876145987002ba6d4df5. The list of files in scope can be found
in the Appendix.

The following supporting documents were provided:

e Functionality and architecture
e |ntegration
e User Stories

e Intro Video

2.1 Objectives
Together with the MSQ team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Threat Model
describing a Snap as an extension of the MetaMask Wallet Trust Module.

3. Review key risks outlined in the MSQ audit docs.

https://github.com/fort-major/msq/tree/6f5b16dddf99624e2874876145987002ba6d4df5
https://github.com/fort-major/msq/blob/master/documentation/architecture.md
https://github.com/fort-major/msq/blob/master/documentation/integration.md
https://union-db.notion.site/MSQ-User-Stories-9f42d78d208940cbb2b9eeb6728b518e
https://www.youtube.com/watch?v=pTQWwCaWdRw&ab_channel=NoReflectionNoReason
https://docs.metamask.io/snaps
https://union-db.notion.site/MSQ-audit-docs-f4c30e9e55244d0281daec0a660ffbd8
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

3 Snap Outline

e The snap can access MetaMask root key entropy via snap_getEntropy(salt) .
¢ Connected dApps can communicate with the snap via RPC calls.

e RPC calls are compartmentalized. The trusted msq.tech dApp can call privileged RPC endpoints, while other dApps can only
access lower-privileged endpoints:

o Privileged endpoints (msq.tech dApp only):
= protected_identity_add

= protected._identity_login

= protected_identity_getLoginOptions

= protected_identity_editPseudonym

= protected_identity_stopSession

= protected_identity_unlinkOne

= protected_identity_unlinkAll

= protected_icrc1_showTransferConfirm

= protected_icrc1_addAsset

= protected_icrc1_addAssetAccount

= protected_icrc1_editAssetAccount

= protected_statistics_get

» protected_statistics_increment

= protected_statistics_reset

= protected_state_getAllOriginData

= protected_state_getAllAssetData
o Public endpoints:

= public_identity_sign,

= public_identity_getPublicKey

= public_identity_getPseudonym

= public_identity_requestLogout

= public_identity_requestLink

= public_identity_requestUnlink

= public_identity_getLinks

= public_identity_sessionExists

3.1 Capabilities
o ® MetaMask
B MSQ - Safe ICP Wallet
@@ @fort-major/msq 0.210 5

Installation request

Installing MSQ - Safe ICP Wallet gives it the following
permissions. Only continue if you trust MSQ - Safe ICP
Wallet.

1. Allow websites to communicate directly with
MSQ - Safe ICP Wallet.

Requested now

Display dialog windows in MetaMask.

9

Requested now

Store and manage its data on your device.

Requested now

0 Derive arbitrary keys unique to MSQ - Safe
ICP Wallet.

Requested now

T G

Details

: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
endowment:rpc { dapps: true, snaps: false }
snap_dialog {}
snap_manageState {}
snap_getEntropy {}
---->%---- raw permissions
#@ [endowment:rpc]
I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!
src/index.ts
#o [snap_dialog]
=~ - snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.
! - this method renders Markdown! check for ctrlchar/markdown/injection
src/protocols/identity.ts
src/protocols/icrct1.ts
#@ [snap_manageState]
= - shap_manageState - snap can store up to 100mb (isolated)
src/state.ts
#o [snap_getEntropy]
- snap_getEntropy - Gets a deterministic 256-bit entropy value, specific to the snap and the user's account. You can use this entropy to generat
src/utils.ts

https://consensys.net/diligence/audits/2024/03/msq-snap/img/permissions.png

4 Findings
Each issue has an assigned severity:

e ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

41 Public RPC Methods and Consent Management ozm (Vs

Resolution

Addressed with the following changeset: fort-major/msq@ 7focde2 .

e |ogin now requires user confirmation via a MM consent message;

¢ the session now has 2h expiry; the next signature request after the session’s expiration triggers a prompt that
allows the user to either refresh the session or to log out;

e both prompts clearly state that the website, where the user is logging it, will be able to silently sign messages
on behalf of one of user’s identities;

Additionally, we were very concerned about the problem, we've discussed on the call. Namely, that in case of
attackers being able to replace the code of the MSQ dapp (via a DNS attack, for example), they will be able to drain
user’s wallets empty. In this commit we’ve also addressed this issue the following way:

e the snap sign APl now requires you to supply not the hash of the transaction, but it’s body instead (we were
able to find a way to make this work without changing any client-side API);

¢ the sign snap method then calculates the hash by itself and signs this hash;
e optionally, if the APl was used from the MSQ website and we detect potentially harmful transaction (one that

could move user’s funds), then we prompt the user with details of this transaction and sign the message only in
case the user confirms it.

This makes users’ assets immutable to even such deadly attacks like ones discussed. Currently this harmful
transaction detection only works at MSQ website - other websites are free to sign any transactions they want
without users noticing it (but they are now semi-protected with session expiry).

Description

User consent may not consistently be enforced. Identities are bound to their origin (URL). Third-party origins are outside the
scope of this Snap and are therefore in a lower trust zone where it is uncertain what security measures are in place to protect the
dApp from impersonating the user’s wallet identity. dApps may be hosted on integrity-protecting endpoints (ipfs/IC), however,
this is not enforced. Additionally, even when hosted on integrity-protecting endpoints there are still risks of insider and external
attacks on the deployed dApp (Insider changing code, External attacker gaining access to code, Injection, Web Attacks), BGP
routing related attacks (typically expensive), and DNS related attacks.

Allowing linked identities to sign with a main origin’s identity extends the risk from one public origin to another.

It should be noted that identities on public RPC methods are origin bound. There is no direct way for one public origin to sign
with another origin’s identity unless it is linked.

Examples

e critical functionality: acting on behalf of user
O SNAP_METHODS.public.identity.sign - Sign with origin bound identity

e potential identity leak
O SNAP_METHODS.public.identity.getPublickey - Origin bound identity

O SNAP_METHODS.public.identity.getPseudonym - origin bound pseudonym

* NO concerns
O SNAP_METHODS.public.identity.getLinks - Origin links

O SNAP_METHODS.public.identity.sessionExists - check if session for origin exists
Example: signing

The function handlerdentitysign is responsible for signing a payload with an identity. Howeuver, it has been observed that the
function proceeds to sign the payload without seeking explicit user confirmation or displaying the payload in a human-readable
format. This approach can significantly undermine the security and trust model of MetaMask Snaps by allowing potentially
malicious operations to be executed without the user’s informed consent.

packages/snap/src/protocols/identity.ts:L268-L280

https://github.com/fort-major/msq/commit/7f9cde2f2d364fc06fd8f8ec2a9011ccb306e641

export async function handleIdentitySign(bodyCBOR: string, origin: TOrigin): Promise<ArrayBuffer> {
const body: IIdentitySignRequest = zodParse(ZIdentitySignRequest, fromCBOR(bodyCBOR));
const manager = await StateManager.make();
let session = (await manager.getOriginData(origin)).currentSession;

if (session === undefined) {

err(ErrorCode.UNAUTHORIZED, "Log in first");
}

const identity = await getSignIdentity(session.deriviationOrigin, session.identityId, body.salt);

return await identity.sign(body.challenge);

Recommendation

When performing critical actions on behalf of the user, always ask for consent. The user must always be notified when a dApp
acts on their behalf (especially signing). For API that provides less critical information it should be considered to implement a
session based consent mechanism that trades security for convenience where, e.g., linked identities or the public key can only be
extracted if the user at least once confirmed this for the current origin (caching the decision).

4.2 Keypairs Generated by Dapps Might Be Unrecoverable Which Could Result in Loss of Funds ¢z

v Fixed

Resolution

The client acknowledged and mitigated this issue in commit fort-major/msq@ s9aebss . Note that the companion dApp can
still sign data with arbitrary salts, but external dApps cannot anymore.

Description

The current Snap implementation allows untrusted dapps to supply their own nonces for the generation of unique private keys
tied to their identities. These nonces, which can be arbitrary and are not managed or stored by the Snap, introduce a risk.
Specifically, if a dapp fails to securely store these nonces or ceases operation, users may irretrievably lose access to their
accounts, potentially resulting in the loss of funds. This issue underscores a vulnerability in the system’s design, where the
reliance on external parties for the management of crucial security parameters compromises the safety and recoverability of user
assets.

Examples

From the documentation:

MSQ is a Snap, it has no cloud storage, so all the data is self-managed by the user. It is safe for users to lose their data
(by re-installing the snap, for example) - because they can recover it from their seed phrase later. To achieve that we
use deterministic algorithms for entropy derivation.

packages/snap/src/protocols/identity.ts:L298-L309

const body = zodParse(ZIdentityGetPublicKeyRequest, fromCBOR(bodyCBOR));
const manager = await StateManager.make();
let session = (await manager.getOriginData(origin)).currentSession;

if (session === undefined) {

err(ErrorCode.UNAUTHORIZED, "Log in first");
}

const identity = await getSignIdentity(session.deriviationOrigin, session.identityId, body.salt);

return identity.getPublicKey().toRaw();

Recommendation

To mitigate the risk of users losing access to their accounts and funds due to mismanaged or lost nonces by dapps, it is
recommended to either:

e Enforce Deterministic Nonces: Shift to a system where the Snap generates unique identities using deterministic nonces,
ensuring all accounts are recoverable, independent of dapps actions or continuity. This is already implemented to generate
“root” dapps identities.

e Introduce Disclaimers: Clearly inform users and developers of the risks through disclaimers in the user interface and
documentation.

4.3 Timestamp Logic Flaws in Snap’s Caching Mechanism iwedivm V%

Resolution

Addressed in commit 4d6b006f2870b8b560e068ae51821d9d962d129a

Description

The Snap employs a custom wrapper around its storage, incorporating a caching mechanism to optimize performance by
updating the Snap’s storage only when necessary. This caching strategy uses a timestamp-based method, maintaining records of

https://github.com/fort-major/msq/commit/59a0b88e73568f8c6a574d3aa56c12c45a1f2c59
https://github.com/fort-major/msq/pull/38/commits/4d6b006f2870b8b560e068ae51821d9d962d129a

the last storage (LasT_sTaTe_pers1sT_tIMESTAMP) and state (staTe_uppaTe_TIMESTAMP) Updates to decide on the need for persisting the
updated state. However, two logical flaws were identified in this approach:

e First, in the retrievestatewrapped() function, where the state is fetched from the Snap’s storage, the state update timestamp is
only refreshed if the retrieved state is null. Consequently, if an existing state is successfully retrieved, the state update
timestamp remains unchanged, which is incoherent.

packages/snap/src/state.ts:L464-L472

if (state == null) {
const s = makeDefaultState();
STATE = s;

STATE_UPDATE_TIMESTAMP = Date.now();
} else {
STATE = zodParse(ZState, fromCBOR(state.data as string));

}
}

e Second, the persiststatelocal() function, responsible for persisting the state, updates the Last_state_persist_tiMestamp before the
actual state update is executed. This can lead to an invalid timestamp if the subsequent state update operation (e.g., due to
CBOR encoding errors or failures in the internal Snap’s storage mechanism) fails, risking state and storage inconsistencies.

packages/snap/src/state.ts:L527-L538

async function persistStatelLocal(): Promise<void> {
if (LAST_STATE_PERSIST_TIMESTAMP >= STATE_UPDATE_TIMESTAMP) return;

zodParse(ZState, STATE);
LAST_STATE_PERSIST_TIMESTAMP = Date.now();
await snap.request({

method: "snap_manageState",

params: {

operation: "update",
newState: { data: toCBOR(STATE) },

Recommendation
Adjust the timestamp update logic as follows:

* In retrieveStateWrapped() , ensure the state_uppaTe_TIMESTAMP IS refreshed whenever a state (not null or empty) is retrieved, not just
when the state is null.

* In persistStatelocal() , Update the LasT_staTe_persisT_TiMESTAMP ONly after the state has been successfully persisted, preventing
inaccuracies in the event of a failed state update.

4.4 Protected (Administrative Origin) RPC Methods and Consent Management iedium [VFixea

Resolution

Addressed with the following changesets: fort-major/msq@ 7focde2 and fort-major/msq@ ebofsd1 (removing whitelisted
method names, only allowing icrci_transfer)

The client provided the following statement:

¢ |ogin now requires user confirmation via a MM consent message;

e the session now has 2h expiry; the next signature request after the session’s expiration triggers a prompt that
allows the user to either refresh the session or to log out;

e both prompts clearly state that the website, where the user is logging it, will be able to silently sign messages
on behalf of one of user’s identities;

Additionally, we were very concerned about the problem, we've discussed on the call. Namely, that in case of
attackers being able to replace the code of the MSQ dapp (via a DNS attack, for example), they will be able to drain
user’s wallets empty. In this commit we've also addressed this issue the following way:

¢ the snap sign API now requires you to supply not the hash of the transaction, but it's body instead (we were
able to find a way to make this work without changing any client-side API);

¢ the sign snap method then calculates the hash by itself and signs this hash;
e optionally, if the APl was used from the MSQ website and we detect potentially harmful transaction (one that

could move user’s funds), then we prompt the user with details of this transaction and sign the message only in
case the user confirms it.

This makes users’ assets immutable to even such deadly attacks like ones discussed. Currently this harmful
transaction detection only works at MSQ website - other websites are free to sign any transactions they want
without users noticing it (but they are now semi-protected with session expiry).

Description

Identities are bound to their origin (URL). Third-party origins are outside the scope of this Snap and are therefore in a lower trust
zone where it is unsure what security measures are in place to protect the dApp from impersonating the users’ wallet identity.
dApps may be hosted on integrity protecting endpoints (ipfs/IC), however, this is not enforced.

https://github.com/fort-major/msq/commit/7f9cde2f2d364fc06fd8f8ec2a9011ccb306e641
https://github.com/fort-major/msq/commit/0b9f8d1215c0780ac5245f792d265618da6b74f6

Protected RPC functions can only be invoked by the MSQ administrative origin. User consent may not consistently be enforced
on the administrative origin.

The administrative origin is identified by the origin URL. According to the client the dApp is hosted on an integrity protecting
endpoint (IC). This already protects from direct manipulation of the deployed code, however, it may still be problematic as the
Snap and Management dApp are in different trust zones with the dApp being exposed to many external factors that make it more
prone to web related attacks. That said, even when hosted on integrity protecting endpoins there are still risks of insider and
external attacks on the deployed dApp (Insider changing code, External attacker gaining access to code, Injection, Web Attacks),
BGP routing related attacks (typically expensive), and DNS related attacks. In the worst case, an insider/external attacker gaining
control of the trusted origin may be able to perform actions on many users behalf’s without them knowing (given that the user
accesses the management origin).

Examples

e critical
O SNAP_METHODS.protected.identity.login - |0g into any origin

O SNAP_METHODS.protected.identity.editPseudonym
O SNAP_METHODS.protected.icrc1.editAssetAccount

e unclear

O SNAP_METHODS.protected.statistics.get
O SNAP_METHODS.protected.statistics.increment
O SNAP_METHODS.protected.statistics.reset

e potential privacy leak
O SNAP_METHODS.protected.state.getAllOriginData - SUbset of origin data (no keys)

O SNAP_METHODS.protected.state.getAllAssetData - SUbset of asset data

O SNAP_METHODS.protected.identity.getlLoginOptions

Recommendation

When performing critical actions on behalf of the user, always ask for consent. The user must always be notified when a dApp
acts on their behalf (especially signing). For API that provides less critical information it should be considered to implement a lazy
session based consent mechanism that trades security for convenience where, i.e., data can only be extracted from the snap if
the user at least once confirmed this for the current session.

4.5 Protected_handleldentityLogin - Unchecked withIdentityId wedium R

Resolution

Addressed with the following changeset enforcing that a valid identityzd was supplied: fort-major/msq@ 59aebss

Description

protected_handleIdentityLogin iS Used to create a new session and logs in to a particular origin (e.g., a website). At a certain point, a
new session object is created, where identityId: body.withIdentityId IS Set. The withidentityId is an unchecked request parameter,
which could potentially lead to an inconsistency where the origin set’s an invalid ID.

Examples

packages/snap/src/protocols/identity.ts:L76-L101

export async function protected_handleIdentitylLogin(bodyCBOR: string): Promise<true> {
const body: IIdentitylLoginRequest = zodParse(ZIdentityLoginRequest, fromCBOR(bodyCBOR));
const manager = await StateManager.make();

if (body.withLinkedOrigin !== undefined && body.withLinkedOrigin !== body.toOrigin) {
if (!manager.linkExists(body.withLinkedOrigin, body.toOrigin))
err(ErrorCode.UNAUTHORIZED, "Unable to login without a 1link");

const originData = await manager.getOriginData(body.toOrigin);
if (Object.keys(originData.masks).length === 0) {
unreacheable("login - no origin data found");

}

const timestamp = new Date().getTime();
originData.currentSession = {
deriviationOrigin: body.withLinkedOrigin ?? body.toOrigin,
identityId: body.withIdentityId,
timestampMs: timestamp,

s

manager .setOriginData(body.toOrigin, originData);
manager .incrementStats({ login: 1 });

return true;

Recommendation

withIdentityId is an id relative to the origins masks, hence, it should be validated against the number of existing masks.
The client validated the issue providing more context:

Moreover, when withLinkedOrigin is provided, it should validate against masks of linked origin data. And if not, then it
should validate with the originData.masks.

https://github.com/fort-major/msq/commit/59a0b88e73568f8c6a574d3aa56c12c45a1f2c59

4.6 Protected_handleAddAssetAccount - Should Verify name, symbol Matches assetId wedium

v Fixed

Resolution

Addressed with the following changeset, escaping and validating asset data more strictly, verifying that the assetld is valid
and displaying symbol and name from it’s internal data: fort-major/msg@ 59aebss

Description

The function protected_handleAddAssetAccount adds an account to an existing asset. It takes the asset name/symbol and assetld as
inputs and then adds an account to the assetzd if the user approves.

The dialog shown to the user displays the target assets symbol and name . However, this information comes from the dApp and it
only used within the dialog. There is no check if the assettd matches the name and symbol1 wWhich might allow the dApp to mislead
the user into accepting the addition of an account for an asset that does not match the displayed name and symbo1 .

Examples

packages/snap/src/protocols/icrc1.ts:L90-L113

export async function protected_handleAddAssetAccount(bodyCBOR: string): Promise<string | null> {
const body = zodParse(ZICRC1AddAssetAccountRequest, fromCBOR(bodyCBOR));
const manager = await StateManager.make();

const agreed = await snap.request({
method: "snap_dialog",
params: {
type: "confirmation",
content: panel(|
heading(" @ Confirm New ${body.symbol} Account &),
text(Are you sure you want to create a new **${body.name}** (**S{body.symbol}**) token account?’),
text(This will allow you to send and receive **${body.symbol}** tokens. '),
divider(),
text("**Confirm?** ¥),
1),
i®
1)

if ('agreed) return null;
const accountName = manager.addAssetAccount(body.assetId);

return accountName;

Recommendation

The function should take an assetzd as input parameter only. Then check if the assetzd has accounts registered. If that’s the case,
display the name , symbol that corresponds to the assetid and add an account upon user confirmation.

4.7 Entropy / Signature Handling & Hardening wedium (Ve

Resolution

The following changeset is addressing this issue by being more strict on type and input validation: fort-major/msq@ 26ageec

Description

The functions getBaseEntropy and getsignidentity lack validation for the correct type of arguments or the presence of control
characters that may allow context breaks (newline).

For example, in the sNAP_METHODS.public.identity.requestLink Method handler, the body.withorigin is unsanitized and concatenated
directly for the resulting salt. withorigin is a user provided value and may include \n which breaks the context of the salt

structure.

Examples

packages/snap/src/utils.ts:L75-L89

export async function getSignIdentity(
origin: TOrigin,
identityId: TIdentitylId,
salt: Uint8Array,

) : Promise<Secp256k1KeyIdentity> {

const orig = isMsq(origin) ? "https://msq.tech" : origin;

const entropy = await getEntropy(orig, identityId, "identity-sign\nshared", salt);

return Secp256k1KeyIdentity.fromSecretKey(entropy);

https://github.com/fort-major/msq/commit/59a0b88e73568f8c6a574d3aa56c12c45a1f2c59
https://github.com/fort-major/msq/commit/26a0eec6466f5da37fe4ef801169c130bbcf23f4

packages/snap/src/utils.ts:L105-L115

async function getBaseEntropy(origin: TOrigin, identityId: TIdentityId, internalSalt: string): Promise<Uint8Array> {
const generated: string = await snap.request({
method: "snap_getEntropy",
params: {
version: 1,
salt: “\x@amsqg-snap\n${origin}\nS${identityId}\nS${internalSalt}",

¥,
1)

return hexToBytes(generated.slice(2));

}

Recommendation

To address this, enforcing that identityzd is a positive number, valid id and origin is a valid URL (free from control characters)
would mitigate misuse of this functionality.

4.8 makeAvatarSvgCustom - Potential SVG HTML Injection, React innerHTML wedium [VFRES

Resolution

Addressed with fort-major/msq@ 26aeeec by adding dompurify to the manually generated SVG-XML, still using innerntme but
sanitized for XSS, escaping bgcolor (incomplete: see below) and turning makeavatarsvgcustom into an internal function with
makeAvatarsvg being the external interface where most params cannot be directly controlled.

Additional fix addressing shortcomings of the previous solution as escapertnl cannot be used for HTML-Attrib sanitization,
adding regex checks for html color arguments for makeavatarsvgcustom : fort-major/msq@ s9aebss

Description

The function makeAvatarsvgcustom inserts the given arguments directly into a string that represents an XML SVG image. Since the
arguments are not sanitized, there is a potential risk for XML-SVG injection, which could include malicious scripts.

Please note that this affects all arguments provided to the function, especially bgcolor , but also the ones that are calculating
cx,cy because the addition turns into a string concatenation if face[xy] is a string.

The severity rating is based on the current exploitability which is comparable low with the demo implementations of the front-

end.

Examples

packages/shared/src/avatar.ts:L23-L89

https://github.com/fort-major/msq/commit/26a0eec6466f5da37fe4ef801169c130bbcf23f4
https://github.com/fort-major/msq/commit/59a0b88e73568f8c6a574d3aa56c12c45a1f2c59

[**

Generates a custom avatar SVG string based on provided parameters including body color, body angle,

face expression, and optional background and eye colors. This function allows for the creation of a
personalized avatar with specific characteristics defined by the input parameters. The SVG is constructed

with various elements such as circles for the body and eyes, and a custom path for the face expression.
Additional details like eye pupils and mouth are also included, with positions adjusted based on the body angle.

@param {string} id - A unique identifier used to generate clip paths for the eyes, ensuring they are unique within the SVG.
@param {string} bodyColor - The fill color for the avatar's body.

@param {IAngle} bodyAngle - An object containing the center coordinates for the body and face, used to position elements.
@param {string} faceExpression - A string representing the SVG path for the face expression.

@param {string} [bgColor="#1E1F28"] - Optional background color of the SVG. Defaults to a dark gray if not specified.
@param {string} [eyeWhiteColor="white"] - Optional color for the whites of the eyes. Defaults to white if not specified.
@returns {string} A string representation of the SVG for the custom avatar.

¥ % % % Sk Sk % % X X ¥ ¥ F

*/
export function makeAvatarSvgCustom(

id: string,

bodyColor: string,

bodyAngle: IAngle,

faceExpression: string,

bgColor: string = "#1E1F28",

eyeWhiteColor: string = "white",
): string {

const { bodyCx, bodyCy, faceX, faceY } = bodyAngle;

const eyeWhitel1Cx = faceX
const eyeWhitel1Cy = faceY
const eyePupiliCx = faceX
const eyePupili1Cy = faceY

EYE_WHITE_1_CX;
EYE_WHITE_1_CY;
EYE_PUPIL_1_CX;
EYE_PUPIL_1_CY;

+ + + +

const eyeWhite2Cx = faceX
const eyeWhite2Cy = faceY
const eyePupil2Cx = faceX
const eyePupil2Cy = faceY

EYE_WHITE_2_CX;
EYE_WHITE_2_CY;
EYE_PUPIL_2_CX;
EYE_PUPIL_2_CY;

+ + + +

faceX + MOUTH_X;
faceY + MOUTH_Y;

const mouthX
const mouthY

return °
<svg xmlns="http://www.w3.0rg/2000/svg" width="100" height="100" style="position:relative;width:100%;height:100%;" viewBox
<defs>
<clipPath id="clip-eye-1-${id}">
<circle cx="${eyeWhitel1Cx}" cy="${eyeWhitelCy}" r="6" />
</clipPath>
<clipPath id="clip-eye-2-${id}">
<circle cx="${eyeWhite2Cx}" cy="S${eyeWhite2Cy}" r="6" />
</clipPath>
</defs>

<rect id="bg" x="0" y="8" width="100" height="100" fill="${bgColor}"/>

<g id="body-group">
<circle id="body" cx="S{bodyCx}" cy="S${bodyCy}" r="50" fill="S${bodyColor}" />

<circle id="eye-white-1" cx="S{eyeWhitel1Cx}" cy="S${eyeWhitelCy}" r="6" fill="S{eyeWhiteColor}" />
<circle id="eye-pupil-1" cx="${eyePupiliCx}" cy="$8{eyePupiliCy}" r="5" fill="#BAOB15" clip-path="url(#clip-eye-1-${id}

<circle id="eye-white-2" cx="S${eyeWhite2Cx}" cy="S${eyeWhite2Cy}" r="6" fill="S{eyeWhiteColor}" />
<circle id="eye-pupil-1" cx="${eyePupil2Cx}" cy="$8{eyePupil2Cy}" r="5" fill="#0BAOB15" clip-path="url(#clip-eye-2-${id}

<g transform="translate(S{mouthX}, S${mouthY})" id="mouth">

${faceExpression}
</g>
</g>
</svg>
}
used in:

apps/site/src/frontend/components/boop-avatar/index.tsx:L37-L54

export function CustomBoopAvatar(props: ICustomBoopAvatarProps) {
return (
<BoopAvatarWrapper

classlList={props.classlList}

size={props.size}

ref={(r) => {

r.innerHTML = makeAvatarSvgCustom(

props.id,
props.bodyColor,
props.angle,
FACE_EXPRESSIONS[props.faceExpression - 1],
props.bgColor,
props.eyeWhiteColor,

)
/>

packages/client/src/identity.ts:L69-L83

getAvatarSrc(bgColor?: string): Promise<string> {
const principal = this.getPrincipal();
const svg = btoa(makeAvatarSvg(principal, bgColor));

return Promise.resolve(data:image/svg+xml;base64,${svg}’);

}

apps/demo/src/frontend/pages/index/index.tsx:L73-L76

const profile: IProfile = {
pseudonym: await identity.getPseudonym(),
avatarSrc: await identity.getAvatarSrc(),

}s

used with innerHTmML

apps/site/src/frontend/components/boop-avatar/index.tsx:L15-L24

export function BoopAvatar(props: IBoopAvatarProps) {
return (
<BoopAvatarWrapper
size={props.size}
ref={(r) => {
r.innerHTML = makeAvatarSvg(props.principal);

+}
/>

Recommendation

Runtime typecheck provided values (numbers vs. strings). Sanitize and validate arguments before embedding then with HTML or
use a templating language to build the SVG (recommended)

4.9 CtriIiChar/Markdown Injection iedium = partially Addressed

Resolution

Addressed with the following changeset, wrapping the Snap native Ul Text element (accepts Markdown), escaping control
characters. Note that the client chose to allow Markdown x_ style elements which is not ideal, as it gives some control over
the presentation of data inside the Snap context to the calling dApp.

Changeset: fort-major/msq@ 2704ces

Description

On certain occasions, the snap may need to present a dialog to the user to request confirmation for an action or data verification.
This step is crucial as dapps are not always trusted, and it’s essential to prevent scenarios where they can silently sign data or
perform critical operations using the user’s keys without explicit permission. To create custom user-facing dialogs, MetaMask
provides the Snaps Ul package, equipped with style-specific components. However, some of these components have been found
to have potentially unintended side-effects.

For instance, the text() component can render Markdown or allow for control character injections. Specifically this poses a
concern because users trust information displayed by the Snap.

In the code snippet provided below, please note that the variable body is provided by the dApp. It may contain Markdown
renderable strings or Control Characters that can disrupt the context of the user-displayed message. It appears that only
protected methods (admin origin) are affected by this, which is reflected in the severity rating of this finding.

Examples

® protected_handleAddAssetAccount - decodes zICRCiAddAssetAccountRequest from cBor With body potentially containing markdown or
control chars.

packages/snap/src/protocols/icrc1.ts:L90-L107

https://github.com/fort-major/msq/commit/2704c68cf811521e3b7f570048305f8204b03413

export async function protected_handleAddAssetAccount(bodyCBOR: string): Promise<string | null> {
const body = zodParse(ZICRC1AddAssetAccountRequest, fromCBOR(bodyCBOR));
const manager = await StateManager.make();

const agreed = await snap.request({
method: "snap_dialog",
params: {
type: "confirmation",
content: panel(|
heading(" @ Confirm New ${body.symbol} Account &),
text(Are you sure you want to create a new **${body.name}** (**$S{body.symbol}**) token account?’),
text(This will allow you to send and receive **${body.symbol}** tokens. '),
divider(),
text("**xConfirm?+* #"),

® protected_handleAddAsset - body

packages/snap/src/protocols/icrcl.ts:L59-L78

export async function protected_handleAddAsset(bodyCBOR: string): Promise<IAssetDataExternal[] | null> {
const body = zodParse(ZICRC1AddAssetRequest, fromCBOR(bodyCBOR));
const manager = await StateManager.make();

const assetNames = body.assets.filter((it) => it.name && it.symbol).map((it) => “S{it.name} (S{it.symbol}));

if (assetNames.length > @) {
const agreed = await snap.request({
method: "snap_dialog",
params: {
type: "confirmation",
content: panel([
heading(" @ Confirm New Assets &),
text(Are you sure you want to add the following tokens to your managed assets list?"),
...assetNames.map((it) => text(’ - **S{it}x*x")),
divider(),
text("**Confirm?** #"),
1,
e
1)

® protected_handleShowICRC1TransferConfirm - body

packages/snap/src/protocols/icrcl.ts:L26-L57

export async function protected_handleShowICRC1TransferConfirm(bodyCBOR: string): Promise<boolean> {
const body = zodParse(ZShowICRC1TransferConfirmRequest, fromCBOR(bodyCBOR));

const agreed = await snap.request({
method: "snap_dialog",
params: {
type: "confirmation",
content: panel(|
heading(== Confirm ${body.ticker} Transfer =),
text("**Protocol:xx"),
text("ICRC-1"),
text("**Initiator:x*x"),
text (@ ${originToHostname(body.requestOrigin)}’),
text("**From:**"),
text(body.from),
text("**To principal ID:*x*"),
text(body.to.owner),
text("**To subaccount ID:**x"),
text(body.to.subaccount !== undefined ? bytesToHex(body.to.subaccount) : "Default subaccount ID"),
text("**Total amount:x*x"),
heading(${body.totalAmountStr} S${body.ticker}"),
divider(),
heading(" & BE CAREFUL! @"),
text("This action is irreversible. You won't be able to recover your funds!"),
divider(),
text("**Confirm?*x #"),
1),
o
1)

return Boolean(agreed);

}

Recommendation

Validate inputs. Encode data in a safe way to be displayed to the user (markdown, control chars). Show the original data provided
within a pre-text or code block (copyable). Consider setting markdown: false for text ui components that do not render text.

../packages/snaps-sdk/src/ui/components/text.ts:L34-L53

VEZS

Create a {@link Text} node.

*

*

* @param args - The node arguments. This can be either a string
* and a boolean, or an object with a ‘value property

* and an optional ‘markdown’ property.

* @param args.value - The text content of the node.

* @param args.markdown - An optional flag to enable or disable markdown. This
* 1s enabled by default.

* @returns The text node as object.

* @example

* const node

*

*

*

text({ value: 'Hello, world!' });

text('Hello, world!"');

text({ value: 'Hello, world!', markdown: false });
text('Hello, world!', false);

const node

const node

const node

*/
export const text = createBuilder(NodeType.Text, TextStruct, [
'value',
"'markdown',
1);
const node = text({ value: 'Hello, world!', markdown: false });

410 Shared/hexToBytes - Incorrect Hex String Handling oz (v

Resolution

Addressed this with the following changeset, enforcing the input string to be of hex-chars with a correct length: fort-
major/msq@ 2704c68

Description

The function hextoBytes aims to convert a hex string into a uintsarray . It splits the string into parts of two characters each and
then tries to parse each part into an integer.

However, the function fails to validate that the provided hexstring is of valid hex characters only. This may lead to the function
interpreting non-hex characters incorrectly as zero bytes while it should throw an exception/report an error condition instead.

In the case where hexstring contains non-hex characters, the parsernt will return nan which in turn gets mapped to [ee, ..]
elements in the resulting uintsarray .

Examples

packages/shared/src/encoding.ts:L42-L58

/x*

Decodes {@link Uint8Array} from hex-string
@see {@link bytesToHex}

@param hexString

* ¥ ¥ * F *

@returns

*/
export const hexToBytes = (hexString: string): Uint8Array => {
const matches = hexString.match(/.{1,2}/9);

if (matches == null) {
throw new Error("Invalid hexstring");

}

return Uint8Array.from(matches.map((byte) => parseInt(byte, 16)));
}i

Recommendation

Before passing the hex string into parselnt function, add validation checks to verify if the given string is a valid hex string of
correct length.

export const hexToBytes = (hexString: string): Uint8Array => {
if (1/7([0-9A-Fa-f]{2})+S$/.test(hexString)) {
throw new Error("Invalid hexstring");

const matches = hexString.match(/.{1,2}/9);
return Uint8Array.from(matches.map((byte) => {
const parsed = parseInt(byte, 16);
if (isNaN(parsed)) {
throw new Error('Invalid byte found')

}
return parsed;
1))
s
411 Unused Imports (e

Resolution

https://github.com/fort-major/msq/commit/2704c68cf811521e3b7f570048305f8204b03413

Addressed with the following changeset, removing the unused imports in encodings.ts : fort-major/msq@ 26aeeec and fort-
major/msq@ 4debees addressing the remaining unused imports.

Description

While reviewing the codebase, we identified multiple instances of unused imports across the project’s files. The presence of
these unused imports may affect its maintainability and readability.

Examples
(This list is not exhaustive)
® TStatisticsData , ZStatisticsData

packages/snap/src/protocols/statistics.ts:L1-L8

import {
IStatisticsData,
type IStatistics,
/ZStatisticsData,
zodParse,
fromCBOR,
ZStatisticsIncrementRequest,

} from "@fort-major/msq-shared";

® jssHA, cre32 , duplicate import principal

packages/shared/src/encoding.ts:L1-L5

import { Principal } from "@dfinity/principal";
import { Encoder } from "cbor-x";

import { Crc32 } from "@aws-crypto/crc32";
import jsSHA from "jssha";

® TMetaMaskEthereumProvider

packages/client/src/client.ts:L1

import { IGetSnapsResponse, IMetaMaskEthereumProvider, ISnapRequest } from "./types";

Recommendation

Remove unused imports. Implementing a linter in the development workflow can help automate the detection and removal of
such imports, ensuring a cleaner codebase and promoting best coding practices.

Appendix 1- Files in Scope

The client provided the following files in scope:

® /packages/shared/

O src/*x/*.ts
O package.json

® /packages/snap/

O src/#x/*.ts

O snap.manifest.json
O snap.config.js

O package.json

® /packages/client/

O src/*x/*.ts
O inline-env-vars.js
O package.json

® /apps/site/

O src/frontend/*+/x (except for styles - xx/x/style.ts)
O index.html

O /public/.ic-assets.json5

O vite.config.ts

O package.json

® /apps/demo (fOI’ reference)

This audit covered the following files:

File SHA-1 hash
apps/site/index.html 8b9be4102fb72bcc21f6252ee56a3d445e59811b
apps/site/src/frontend/backend.ts b6c3868837c9b932f2810f72d0b7cadae2822447
apps/site/src/frontend/components/account-card/index.tsx d76ba120b044009f3749dd1b7b815a72ach1fb3c

apps/site/src/frontend/components/account-card/style.ts 34891584734c65489487b1d62376bdaeefala27e

https://github.com/fort-major/msq/commit/26a0eec6466f5da37fe4ef801169c130bbcf23f4
https://github.com/fort-major/msq/commit/4d6b006f2870b8b560e068ae51821d9d962d129a

File
apps/site/src/frontend/components/add-account-btn/index.tsx
apps/site/src/frontend/components/add-new-mask-btn/index.tsx
apps/site/src/frontend/components/add-new-mask-btn/style.ts
apps/site/src/frontend/components/boop-avatar/index.tsx
apps/site/src/frontend/components/boop-avatar/style.tsx
apps/site/src/frontend/components/cabinet-nav/index.tsx
apps/site/src/frontend/components/cabinet-nav/styles.ts
apps/site/src/frontend/components/contact-us-btn/index.tsx
apps/site/src/frontend/components/contact-us-btn/style.ts
apps/site/src/frontend/components/divider/style.ts
apps/site/src/frontend/components/error-spoiler/index.tsx
apps/site/src/frontend/components/header/index.tsx
apps/site/src/frontend/components/loader/index.tsx
apps/site/src/frontend/components/login-option/index.tsx
apps/site/src/frontend/components/login-option/style.ts
apps/site/src/frontend/components/modal/index.tsx
apps/site/src/frontend/components/notification-bar/index.tsx
apps/site/src/frontend/components/notification-bar/style.ts
apps/site/src/frontend/components/spoiler/index.tsx
apps/site/src/frontend/components/spoiler/style.ts
apps/site/src/frontend/components/toggle/index.tsx
apps/site/src/frontend/components/txn-history-entry/index.tsx
apps/site/src/frontend/components/txn-history-entry/style.ts
apps/site/src/frontend/components/txn-history-modal/index.tsx
apps/site/src/frontend/components/txn-history-modal/style.ts
apps/site/src/frontend/index.tsx
apps/site/src/frontend/pages/cabinet/my-assets/index.tsx
apps/site/src/frontend/pages/cabinet/my-assets/receive/index.tsx
apps/site/src/frontend/pages/cabinet/my-assets/send/index.tsx
apps/site/src/frontend/pages/cabinet/my-assets/send/style.ts

apps/site/src/frontend/pages/cabinet/my-assets/style.ts

apps/site/src/frontend/pages/cabinet/my-assets/txn-history/index.tsx

apps/site/src/frontend/pages/cabinet/my-assets/txn-history/style.ts

apps/site/src/frontend/pages/cabinet/my-links/index.tsx
apps/site/src/frontend/pages/cabinet/my-links/style.ts
apps/site/src/frontend/pages/cabinet/my-masks/index.tsx
apps/site/src/frontend/pages/cabinet/my-masks/style.ts
apps/site/src/frontend/pages/cabinet/my-sessions/index.tsx
apps/site/src/frontend/pages/cabinet/my-sessions/style.ts
apps/site/src/frontend/pages/error/index.tsx
apps/site/src/frontend/pages/icrc35/index.ts
apps/site/src/frontend/pages/index/index.tsx
apps/site/src/frontend/pages/integration/login/index.tsx

apps/site/src/frontend/pages/integration/login/style.ts

apps/site/src/frontend/pages/integration/payment/checkout/index.tsx

apps/site/src/frontend/pages/integration/payment/checkout/style.ts

apps/site/src/frontend/pages/integration/payment/index.tsx
apps/site/src/frontend/pages/integration/payment/style.ts
apps/site/src/frontend/pages/integration/payment/url-payment.tsx
apps/site/src/frontend/pages/statistics/index.tsx
apps/site/src/frontend/pages/statistics/style.ts
apps/site/src/frontend/pages/txn/fail.tsx

apps/site/src/frontend/pages/txn/style.ts

SHA-1 hash
53969e€696804c8271c90b2f444721d1f7918851f
211a56671300528653c984c7d79ef1€9926d9783
3a8faabc2e6a07fff67fe32c005acd24d42badff
62a56160629e2c2aa7d7d945ddc476d70e0b1790
547a3fdadcf8356dc31806c9d6dd04e70c26f0d00
b5625ec63c61897b1125617d40d749f874fc9484
58ad8db8349d9b7b9b3325d4cce23cad4bf 13050
2a5211ddbb12b6019e2e0472be1f486d2259292b
0809d1e4f4bb7c29042606c3c6cf9682eaaaaafss
b1ad2985dd999f7b327806d3dd5288f04dcBa9c34
44c3c558e0a144ebf51d250ba2f2b509ac9927e4
37baeab6762fb461ea3b3455415004d2411aa8e4a
0e794fe08608ad68504a906e682bedbe4ch48997
7799a6ecd24a297c6acdc5523d21888f3fd76fd2
2e4a2f036dc1eb7779433e09f55938274e0e9b6b
118b1b63dbec528b0c488cd743ce3194d1c0O1e04
83596€6211d998962724ad418c8d9bd46¢c6¢c2cTc
9619aab409f7b213d3e1a64811cc57195f4a5bb5
49475e0eb5012a07063948a67b92a8ce5ccaal9c
1d395dd18623b612d14c61f964259a1bcbdaBas9
e6da652eed80769e68ba839908380d1286e8bdc3
9245ad3ce511150df1a24696ea8dd8c9b441028f
ce100793f18d8fBec29a99cd0d4cc46506c033ad
7cab507a764d089a1fefbcad46502c6020b3d437e
549efe7b3b3fff6a6f1858154a0913c2a8524¢c02
0505e0951580a96d5a894f9147a3e05c4ff13e1f
8122f35b14fd58829640e3e7b02b0d39206865da
ba9f7e4f7253e8e3618f472007930189078906d8
4dabbd793f4da8792097490ef44e0fad8f7f61bf
2e8460791d23cc676d2be2ch6f4340668a8ed93ce
909c9819fdcf11be9edb8e7d2bba53ff9175d028
1f2bda3b8d469a151c79e645e1b9e41c140237ce
3008b0ff3cch@136b1chba69982c1559485251138
3b974a91838b20667ce5a2b90ebeB80416912399f
fdff9b76861611ef084bb224546e6da94f633ala
a41ef2620a14d4feb041dodafocf10fbad962773¢
c2b5aa37fd471b99ea306c4920599af0a08f04625
c3adlce3baa36c86e53b7014e81729f846f2f511
6e0ba119360b2c1bla70ab95cee4275078b7dae1
b5f2d341d72e4294a1039894b3fbalb5e47a29ch
1133575€a2099500bbf17c681dc9c74e2d73a593
5d9b95ad7ae49d0e5629844b45ef2968f0Baa24b5
4845703fd6310342084c085700a2f1ffcda1b859a
04690601978e209a4041b9f71f68cb2al3aafbefb
£84672b5f4f5c6250a1541b2cefb14907bf49974
5d4d5c6c90ef3f1c3fe5f9dd2cc696c8704757€0
814ec2bfB86443050c9b62a21e0d585b37cchaeed
6cb16a0b6b0c48b9cf844f4d852ae06d6c474d23
88f8b70be2e61d9b9bf7e74e231bBeb6c52e9e1da
eb70655e4939ef18dfalfc69e2d2aBe22c2c9bc21
d49633a063ad52d9bc8598d046310ealce7012¢c3
babdb5d001cd5b92f49ee1a42a70f3d2fd2887e3

7cde98ae9d39606e202cd14c233b20f4ca2191a5

File
apps/site/src/frontend/pages/txn/success.tsx
apps/site/src/frontend/store/assets.tsx
apps/site/src/frontend/store/global.tsx
apps/site/src/frontend/store/origins.tsx
apps/site/src/frontend/ui-kit/button.tsx
apps/site/src/frontend/ui-kit/icon.tsx
apps/site/src/frontend/ui-kit/index.ts
apps/site/src/frontend/ui-kit/input.tsx
apps/site/src/frontend/ui-kit/typography.ts
apps/site/src/frontend/utils/index.ts
apps/site/vite.config.ts
example.env
packages/client/inline-env-vars.js
packages/client/src/client.ts
packages/client/src/der.ts
packages/client/src/icrc35-client.ts
packages/client/src/identity.ts
packages/client/src/index.ts
packages/client/src/internal.ts
packages/client/src/types.ts
packages/shared/src/avatar.ts
packages/shared/src/encoding.ts
packages/shared/src/index.ts
packages/shared/src/types.ts
packages/snap/jest.config.js
packages/snap/snap.config.js
packages/snap/src/index.ts
packages/snap/src/protocols/icrcl.ts
packages/snap/src/protocols/identity.ts
packages/snap/src/protocols/state.ts
packages/snap/src/protocols/statistics.ts
packages/snap/src/state.ts

packages/snap/src/utils.ts

SHA-1 hash
bdb735ead3ec5640e9f7badc81de9ffbe748bddb
€7159e8232¢ch3084¢c7b1925e545a26db527135e7
94385e€a230675b1d14d6a61cbcb4fadc16d3bc73
637cae9834e366ch1ef96d8c2a3eB144faad8167
fe2e6a56c82934ach9b5638fd3a52209113772b6
94a68331¢c079dbd2abc135873cb33896ac3e78e2
d2136288203b107228062926796154746c6676€3
c68cabc2e3e96418c9eddcd8614274811906¢c64f4
72dada658b8371134c88186¢c82bb7e21822d2394
d7ee8b71495ed76ebB0Babb41e4fe5aa8fafc97fe
14ae454602a17b4c3c9b8b8fd11d87146fe80017
f7a317343cee45951eb900898b36ee068ffde49a
bcf60bfbb7f4bf40b154aecd23a3141dc12d39b9
0f9839c32b56081a2e1ce4c12d6dbf41f41e2a4f
3490961d2124b147520754f8e5a6cff7d1e7facc
9157436a6b8c008070a1d1d1686d59c4c2c78e55
2ebda390d8af85f7c4f9be9854cda9d3e7791919
947732909d82406¢ch5bf8ea3ada377bd618950408
a613131644cde88f9b97f518e42552f60e13babe
babb8553a72a5af627092866aad9ff30ac653554
8eae636bc7362422bd833400b2fc93bf5949278¢
d3e426f0c7710f1b2a9019bc6eb9a917e3ad1e62
ab14eed2b74c85746524226c5c6a2a082h7640478
74e5227fc1729e977a2e38e133a3e451d7bf0722
d1c409efee5958ce5346655d3912b644894e098d
f9325fcd7fefal159af4d56edf5615116ce834238
190e84d22c2e6daec6f62df904c37a5780e9be4 8
210daa9f4ecd7ede579f7c338a81bd1b822daefa
89879b78884e70b81714da1356b5abb46dcc8c9d
02726e414dd7bc80ec321d0c6197¢c18cf8735a91
d930d52b7376258bb0460666b10c7871ec3ecc51
36c0c8980d43091bec59a7497e29587e5f019f0¢C

6520426ebaff305a51bf7f758667917e1b4cbbc4

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving

area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY c consensys

https://consensys.io/

