
Tezoro Snap

Date April 2024

Auditors Valentin Quelquejay1 Executive Summary
This report presents the results of our engagement with Tezoro to review the Tezoro
Snap.

The review was conducted over five days, from April 8, 2024 to April 12, 2024, by Valentin Quelquejay. A total of 5 person-days
were spent.

The Tezoro snap is designed to communicate with the Tezoro dApp. It is an extension of the main dashboard. Specifically, it
monitors user’s token balances every fifteen days and alerts them when their token balance exceeds a certain treshold,
suggesting them to backup their assets to Tezoro if they haven’t already done so. Users can link the snap with their Tezoro
account via the Tezoro dashboard.

2 Scope
Our review focused on the commit hash 4204075301856f7412f07746c937343fb31cb7b8. The list of files in scope can be found in
the Appendix.

2.1 Objectives

Together with the Tezoro team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. Identify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Threat Model
describing a Snap as an extension of the MetaMask Wallet Trust Module.

3 Snap Outline
The snap communicates and authenticates with the Tezoro API using the user’s token provided by the companion dApp.

Connected dApps can communicate with the snap via RPC calls.

The snap triggers a cron job every fifteen days to notify the user about tokens that are not backed up.

The snap stores data in persistent storage.

3.1 Capabilities

Details

1 Executive Summary

2 Scope

2.1 Objectives

3 Snap Outline

3.1 Capabilities

4 Findings

4.1 Lack of Origin Check on RPC
Requests Critical ✓ Fixed

4.2 getPriceOfAssetQuotedInUSD
Might Return Flawed Asset Prices

Major ✓ Fixed

4.3 Inaccurate Return Value in
checkTokens() Medium

✓ Fixed

4.4 cronJob checkTokens Might
Flood User Notifications Medium

✓ Fixed

4.5 deleteToken Should Prompt
User for Its Consent Medium

✓ Fixed

4.6 cronJob checkTokens Return
Value Is Not Necessary Minor

✓ Fixed

4.7 Potential Markdown Injection
in snap_notify Minor ✓ Fixed

4.8 External/User Input
Sanitization Minor ✓ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

AUDITS FUZZING SCRIBBLE ABOUT

https://github.com/tezoroproject/metamask-snap/tree/4204075301856f7412f07746c937343fb31cb7b8
https://docs.metamask.io/snaps
https://consensys.net/diligence/audits/private/ufe3nofn17i986/img/permissions.png
https://consensys.net/diligence/audits/private/ufe3nofn17i986/img/permissions.png
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

🚜 [snap_dialog]
 ☝️ - snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.
 ⚠️ - this method renders Markdown! check for ctrlchar/markdown/injection
 🔸 src/index.ts
🚜 [snap_notify]
 👌 - snap_notify - Displays a notification in MetaMask or natively in the browser. Snaps can trigger a short notification text for actionable or ti
 ⚠️ - this method renders Markdown! check for ctrlchar/markdown/injection
 🔸 src/index.ts
🚜 [snap_manageState]
 🪤 - snap_manageState - snap can store up to 100mb (isolated)
 🔸 src/index.ts
 🔸 src/check-tokens.ts
🚜 [endowment:network-access]
 🌐 - endowment:network-access - snap can access internet
 ⚠️ - this method may leak information to external api
 🔸 src/get-backups.ts
 🔸 src/external/get-price-of-asset-quoted-in-usd.ts
🚜 [endowment:ethereum-provider]
 🔺 - endowment:ethereum-provider - snap can access ethereum API
 ⚠️ - check if the **snap code** (not site) actually accesses the global 'ethereum' object
see https://docs.metamask.io/snaps/learn/about-snaps/apis/#snap-requests
 🔸 src/index.ts
 🔸 src/check-tokens.ts
🚜 [endowment:rpc]
 ❗ - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!
 🔸 src/index.ts
🚜 [endowment:cronjob]
 - Cron Job 0:
 👉 At 12:00 AM, on day 1 and 15 of the month
 used in:
 🔸 src/index.ts
🌲 - Package Dependencies:
 - @metamask/rpc-errors:^6.2.1 (🔺 looks like devDependency 👀)
 - @metamask/snaps-sdk:^3.1.0 (🔺 looks like devDependency 👀)
 - buffer:^6.0.3 (🔺 looks like devDependency 👀)
 - viem:^2.7.22 (🔺 looks like devDependency 👀)
 - zod:^3.22.4 (🔺 looks like devDependency 👀)

4 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be fixed.

4.1 Lack of Origin Check on RPC Requests Critical ✓ Fixed

Resolution

Addressed by tezoroproject/metamask-snap#41

Description

The Snap does not validate the origin of RPC requests, allowing any arbitrary dApp to connect to the Snap and initiate arbitrary
RPC requests. Specifically, any dApp can access the privileged getToken and deleteToken RPC endpoints. Consequently, a
malicious dApp could potentially extract a user’s Tezoro token from the Snap and impersonate the user in interactions with the
Tezoro API. Depending on the permissions associated with this token, the implications could be critical.

Example

packages/snap/src/index.ts:L14-L18

export const onRpcRequest: OnRpcRequestHandler = async ({ request }) => {
 switch (request.method) {
 case 'requestAccounts': {
 const data = await ethereum.request({
 method: 'eth_requestAccounts',

packages/snap/src/index.ts:L64-L65

case 'getToken': {
 const state = await snap.request({

packages/snap/src/index.ts:L34-L35

case 'saveToken': {
 const result = await snap.request({

Recommendation

Validate the origin of all incoming RPC requests. Specifically, restrict access to the RPC endpoints to only the Tezoro
management dApp. Additionally, consider removing any endpoints that are not essential for the Snap’s functionality. For example,
the getToken endpoint for extracting the API token might be unnecessary and could be removed to enhance security.

https://github.com/tezoroproject/metamask-snap/pull/41

4.2 getPriceOfAssetQuotedInUSD Might Return Flawed Asset Prices Major ✓ Fixed

Resolution

Addressed by tezoroproject/metamask-snap#42

Description

First, the function getPriceOfAssetQuotedInUSD() operates under the assumption that stablecoins—specifically ‘USDT’, ‘USDC’, ‘DAI’,
‘USDP’, and ‘TUSD’—always maintain a 1:1 price ratio with the USD. Although this is generally expected to be the case, there have
been instances where some stablecoins failed to uphold their peg to the USD. In such scenarios, this assumption no longer holds
true, resulting in the return of inaccurate balances. Furthermore, it’s important to note that the prices returned by this function
are quoted in USDT, despite the function’s name suggesting that prices are returned in USD. This could lead to discrepancies if
‘USDT’ diverges from its fiat counterpart.

Second, The function getPriceOfAssetQuotedInUSD() assumes that every token name that starts with ‘W’ is a wrapped token. Thus, the
initial ‘W’ is removed from the token name before fetching the prices from Binance API. As a result, the subsequent API request
made to get the price of the unwrapped token could potentially fail or return an incorrect price, if the token name starts with a
‘W’ but the token is not a wrapped token. For instance, the “WOO” token is present in the list of tokens supported by the Snap. In
that case, the price API will error as it will try to fetch the price of the OOUSDT pair instead of WOOUSDT .

Finally, relying on an hardcoded external APIs is sub-optimal. Indeed, it may be that the API may fail, start returning incorrect
data, or simply become outdated and stop working.

Example

packages/snap/src/external/get-price-of-asset-quoted-in-usd.ts:L15-L19

if (assetName.startsWith('W')) {
 // Assume this is a wrapped token
 assetName = assetName.slice(1); // remove W
}
try {

packages/snap/src/external/get-price-of-asset-quoted-in-usd.ts:L20-L23

const response = await fetch(
 `https://api.binance.com/api/v3/ticker/price?symbol=${assetName.toUpperCase()}USDT`,
);
const json = await response.json();

Recommendation

To mitigate this issue, one should avoid making assumptions about token names. Instead, one would ideally fetch token metadata
from a trusted source to determine whether a token is wrapped or not, hardcode this information in the token-list, or directly
fetch the price of the wrapped token.

Moreover, instead of hardcoding the price API, we would recommend setting up a custom API Gateway which provides a layer of
abstraction between the Snap and the external APIs it uses. This would provide flexibility and allow quickly swapping for other
external APIs in case they stop behaving properly.

4.3 Inaccurate Return Value in checkTokens() Medium ✓ Fixed

Resolution

Addressed by tezoroproject/metamask-snap#43

Description

The function checkTokens() checks if token exists in parsedState.data and returns {isStatePresent: true, isTokenPresent: true,} if it does
not. This is incoherent as isTokenPresent should be false in that case.

Examples

packages/snap/src/check-tokens.ts:L41-L46

if (!token) {
 return {
 isStatePresent: true,
 isTokenPresent: true,
 };
}

packages/snap/src/schemas.ts:L35-L37

https://github.com/tezoroproject/metamask-snap/pull/42
https://github.com/tezoroproject/metamask-snap/pull/43

export const stateSchema = z.object({
 token: z.string().optional(),
});

Recommendation

Fix the return value. isTokenPresent should be false if the token is not present in the state. Alternatively, fix the zod stateSchema to
ensure that token is not optional. In that case the safeParse function will fail and the function will return the correct value.

4.4 cronJob checkTokens Might Flood User Notifications Medium ✓ Fixed

Resolution

Addressed by tezoroproject/metamask-snap#44. The snap now sends a single notification.

Description

The snap includes a cron job named checkToken that activates every 15 days to verify which user tokens are backed up and which
are not. For each token identified as not backed up (listed in tokenList), the snap issues a notification to the user. If the list of
unbacked tokens is extensive, the user will receive many notifications, potentially undermining the effectiveness of these alerts or
causing the user to overlook other important notifications. To alleviate this concern, it is recommended to aggregate these
notifications. Issuing a single notification, or capping the number of notifications when the size of tokenList surpasses a specific
threshold (e.g., 5), could improve the user experience.

Examples

packages/snap/src/index.ts:L122-L125

[...tokensList].map(async (token) => {
 await snap.request({
 method: 'snap_notify',
 params: {

Recommendation

We would recommend to aggregate notifications, summarizing the status of unbacked tokens, at least when their number
exceeds a certain reasonable threshold.

4.5 deleteToken Should Prompt User for Its Consent Medium ✓ Fixed

Resolution

Addressed by tezoroproject/metamask-snap#45

Description

As a rule of thumb, every state-changing interaction with the Snap’s state should require user confirmation, and the process
should be aborted if the user does not consent. This principle is already applied to the saveToken RPC endpoint. To maintain
consistency and ensure user control over their data, the deleteToken endpoint should also prompt the user for consent before
proceeding to delete the token from the Snap’s state.

Examples

packages/snap/src/index.ts:L85-L96

case 'deleteToken': {
 await snap.request({
 method: 'snap_manageState',

 params: {
 operation: ManageStateOperation.UpdateState,
 newState: {},
 encrypted: true,
 },
 });
 return true;
}

Recommendation

Similarly to the saveToken RPC endpoint, the deleteToken endpoint should ask the user for its consent before deleting the token
from the snap’s state.

4.6 cronJob checkTokens Return Value Is Not Necessary Minor ✓ Fixed

Resolution

https://github.com/tezoroproject/metamask-snap/pull/44
https://github.com/tezoroproject/metamask-snap/pull/45

Addressed by tezoroproject/metamask-snap#46

Description

The cronJob checkTokens return value is not necessary as it will never be accessed, and should be omitted.

Examples

packages/snap/src/index.ts:L133-L136

return {
 data,
 error,
};

Recommendation

Drop the return value

4.7 Potential Markdown Injection in snap_notify Minor ✓ Fixed

Resolution

Fixed by addressing issue issue 4.4

Description

It should be noted that the snap_notify message is not protected against markdown injection. This vulnerability means that token
names could potentially be used to inject malicious characters into the prompt. Since token names are currently sourced from a
predefined list of supported tokens, the risk is mitigated for the time being. However, it is important to consider this vulnerability,
especially if the list of supported tokens is expanded or modified in the future.

Examples

packages/snap/src/index.ts:L122-L130

[...tokensList].map(async (token) => {
 await snap.request({
 method: 'snap_notify',
 params: {
 type: 'native',
 message: `Protect ${token} from loss with on-chain backup & will`,
 },
 });
});

Recommendation

Sanitize the token names to protect against markdown injections.

4.8 External/User Input Sanitization Minor ✓ Fixed

Resolution

Fixed in tezoroproject/metamask-snap#47

Description

It is important that every external or user input is validated to protect against injection vulnerabilities. While the zod library is
utilized for validation in most instances within the codebase, there are exceptions where external inputs are not sanitized. This
oversight could lead to potential security vulnerabilities.

Examples

packages/snap/src/index.ts:L46-L61

https://github.com/tezoroproject/metamask-snap/pull/46
https://github.com/tezoroproject/metamask-snap/pull/47

 const { params } = request;

 await snap.request({
 method: 'snap_manageState',

 params: {
 operation: ManageStateOperation.UpdateState,
 newState: {
 token: params.token,
 },
 encrypted: true,
 },
 });
 return true;
}
return false;

Recommendation

To mitigate potential security risks, make sure to implement comprehensive input validation for all untrusted inputs across the
entire codebase. Specifically, for the example provided, utilizing zod to sanitize params.token and throw if the token does not
adhere to the expected format would help in preventing bugs and potential injection attacks. Establishing a consistent validation
practice will help prevent vulnerabilities related to unsanitized inputs.

Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

packages/snap/jest.config.js 06eeb5e61e820fa8b33acaa02daeb5f45e2624bd

packages/snap/snap.config.ts cdd2b09e283e57825ba279dd5ae27771dbc47362

packages/snap/src/abi/ERC20.ts 649a098160c9e5c5f21b54f7a10806acff93590f

packages/snap/src/abi/Tezoro.ts 11f6f19cf4132578be2a491b5f82edaa50f45011

packages/snap/src/check-tokens.ts a402a78fa0fe1cb567a26cfa8737283198642fd6

packages/snap/src/constants.ts 66053e7238946ebb9dc64fedafe83d172b2af522

packages/snap/src/external/get-price-of-asset-quoted-in-usd.ts 043e7c8c5c22973a2f0aab317f2071208e0d1f55

packages/snap/src/get-active-backups.ts 439b3d8fd2d57b80bf4316066916d7e646f94f4d

packages/snap/src/get-backups.ts 77cc64d1f3aad7d6ed62d9323fefcc839d09106a

packages/snap/src/get-token-balances.ts b5b3e7189a2a595bb7af19abf73a961800e1d1ca

packages/snap/src/index.test.ts fc255067fc212f97b291f7c215f3c281d31d4ff1

packages/snap/src/index.ts 38b674508aad086de11f85736efadab10f3f0dba

packages/snap/src/public-client.ts 0d201354d6674704c0a93bf7e00283bd091de028

packages/snap/src/schemas.ts 9594244efeaf8becbe32bfbe40eab82411a1dcdc

packages/snap/src/tokens-list.ts ca01560a7936e1f3addee41143737cc1330084d3

packages/snap/src/types.ts 4a611b9b889084f5d300527d5eb7a4fcb62f6aeb

packages/snap/src/utils/assert-is-with-message.ts 8704873a53ede576c3b822cd24867df23860d4e9

Appendix 2 - Disclosure
Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

https://consensys.io/

