@Diligence

AUDITS

FUZZING SCRIBBLE ABOUT

MetaMask DeleGator

1 Executive Summary
2 Scope

3 System Overview
3.1 Main functionality

3.2 DeleGatorCore.sol
3.3 MultiSigDeleGator.sol

3.4 HybridDeleGator.sol

4 Security Specification
4.1 MultiSigDelegator
4.2 HybridDeleGator:

4.3 DelegationManager:

5 Findings

5.1 Important Points to Consider
and Keep in Mind 'Medium

Acknowledged

5.2 Delegators Can Abuse Gas for
Their Own Purposes Medium

Acknowledged

5.3 No Guarantee That Action Is
Executed Even if Transaction
Succeeds Medium

Acknowledged

5.4 ERC20BalanceGteEnforcer :

Lock Mechanism Insufficient
Medium

5.5 ERC20BalanceGteEnforcer :

Separate Address Needed for
Payment Medium

5.6 AllowedCalldataEnforcer :

Must Only Be Used for Static
Types Medium

5.7 DeleGatorCore :

Implementation Contracts Should
Not Support Interfaces and Not

Accept Tokens (I3

5.8 MultiSigDeleGator and

HybridDeleGator : reinitialize
Function Should Be Removed

5.9 HybridDeleGator :

_updateSigners Reverts
Overzealously [t

510 MultiSigDeleGator : No

Function to Retrieve the Number
of Signers Directly (I3

511 MultiSigDeleGator : Caution
Regarding
_addSignersAndThreshold inthe

Next Version(s) ({3

5.12 DelegationManager :2-Step

Ownership Transfer and
Renouncing Ownership (i)

5.13 DeployedEnforcer :

Possibility for Better Protection
Against Usage Mistakes (13

514 sSimpleFactory : Low-Level
Code and Empty Revert ({13

515 HybridDeleGator Should

Only Be Deployed on Chains That
Support P256 Signature
Verification at

0xc2b78104907F722DABAc4C691826
a522B2754De4

5.16 Missing Events (I3

517 DeleGatorCore and Related
Contracts: Miscellaneous Minor

Points (113

Date June 2024

Auditors Heiko Fisch, Arturo Roura

1 Executive Summary

This report presents the results of our engagement with the MetaMask DeleGator team to review the smart contracts of their
DeleGator codebase.

The review was conducted in May and June, 2024, by Heiko Fisch and Arturo Roura.

Very briefly, the DeleGator system allows to delegate control over a smart contract account to other parties. While this control
can be unrestricted, in the vast majority of cases, the SCA owner will want to include caveats in the delegation that restrict what
actions the delegate can perform on the account. This is achieved via enforcer contracts that have access to the action and
contextual information regarding the delegation. While an enforcer’s primary task is to decide whether to allow or reject the
redemption of a delegation with this particular action, they are much more versatile and can contain arbitrary state-changing
code, allowing for a highly flexible delegation system. Finally, a delegate can re-delegate their rights on the root SCA to other
parties; new caveats can be added in this process and are enforced together with the original ones. This allows for entire
delegation chains, where each delegator along the chain can add their own restrictions.

The premise of the system - giving someone else control over one’s account - in combination with the high flexibility naturally
creates a high-risk situation for assets held in and privileges associated with the SCA. We strongly recommend to exercise
caution and limit exposure. Since caveats are responsible for the restrictions that accompany a delegation, getting them right is
crucial, so delegators in general and the root delegator in particular must pay utmost attention to the caveats. This is particularly
true since enforcers have a low-level interface and quite often a very technical function/specification, while delegators have high-
level intentions for their restrictions. We see wrong enforcer usage - and insufficient delegation restriction in general - as one of
the main security risks.

Please note that we have not conducted a review of the fixes proposed by the client for the identified issues. While the client has
acknowledged some issues and has proposed fixes for others, these fixes have not been reviewed by us.

2 Scope

Our review focused on the commit hash ee9f363e1128c7ef214f36e08dc0ce0b1069ef26. Most of the contracts were in scope,
with the exception of an unfinished enforcer; the detailed list of files together with their SHA-1 hashes can be found in the
Appendix. Daimo’s P256 verifier has been audited before by Veridise and was included in this review only on a best-effort basis.

3 System Overview

3.1 Main functionality

Delegator contracts enable users to create precise delegations to other accounts, allowing these accounts to act on behalf of the
delegator. These delegations can be finely tuned to accommodate a wide array of use cases.

Contracts wishing to utilize this functionality must inherit from pelecatorcore.sol , thereby gaining access to the
executeDelegatedAction function, which is exclusively callable by the bpelegationManager .

The DpelegationManager Serves as a secondary entry point for the inheriting contract, endowed with full authority to execute actions
on its behalf. It is responsible for validating delegation chains within the redeembelegation function. These chains serve as proof that
the actions to be executed by the inheriting contract align with the original delegator’s intent, as the redeemdelegation function in
DelegationManager can be invoked by anyone.

Delegation Chains

A delegation chain is constructed from pelegation Structs, wherein the delegator’s intent is defined and signed. The root
Delegation iNcludes a root_autHorITY identifier, which designates the creator of the delegation as the account authorizing another
account to act on its behalf. In subsequent delegations, the authority field is populated with the hash of the previous pelegation ,
enabling the creation of delegation chains.

In these chains, a delegate Of an already established bpelegation can create a new bpelegation , Wherein they assume the role of the
delegator and assign an account as the new delegate . The Delegator can customize the new pelegation Values to suit their desired
requirements. The authority field plays a crucial role in the construction of delegation chains since it records the pelegation hash
of the previous Dpelegation Where the delegator Of the new delegation was the delegate . The new delegator must sign this new
Delegation tO attest that the new delegate, Caveats, salt, and authority represent their intent, or validate the hash of the newly
created Dpelegation on-chain.

To execute a call on behalf of the root delegator , @ delegate thatis mentioned in a valid delegation chain will call redeembelegation
providing the action he wants to execute on behalf of the root delegator , and a pelegation chain that links the caller as the
delegate Of the last pelegation to the root pelegation .

Enforcers and Caveats

https://github.com/MetaMask/DeleGator/tree/ee9f363e1128c7ef214f36e08dc0ce0b1069ef26
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

5.18 MultiSigDeleGator :
Miscellaneous Minor Points

519 HybridDeleGator :
Miscellaneous Minor Points

5.20 DelegationManager and

To verify that the action provided by the caller adjusts to the terms stipulated by each delegator in the delegation chain,
DelegationManager calls a series of hooks before and after the action . These hooks can call one or more enforcer contracts to
validate if the action is valid according to the caveats stipulated on each specific pelegation .

Each bpelegation in the delegation chain can contain an array of caveats , which include the enforcer address and the caveat terms
and arguments . This gives the user the possibility of fine-tuning the desired outcome of the executed action on his behalf.

Delegation authorization

If a user prefers not to provide a signature for the pelegation hash, they can invoke the delegate function in the pelegationManager
contract, supplying a pelegation Where they are the delegator . This function stores the pelegation hash on-chain, eliminating the
need for any entity to provide a valid signature to attest that it was authorized by the delegator .

To revoke the authority previously granted via a signed pelegation Or an on-chain stored pelegation , @ user can invoke the
disableDelegation function, providing a pelegation Where they are the delegator . This action stores the bpelegation hash on-chain and
blocks any further use of that delegation . The process can be reversed by calling enablebelegation .

Ultimately, the bpelegationManager contract will call the executebelegatedaction function from the root delegator and execute the action
inputted by the caller.

3.2 DeleGatorCore.sol

The bpelecatorcore abstract contract provides inheriting contracts the capability to execute bpelegations through the
DelegationManager System. It also establishes a foundational structure to support ERC4337 functionality, including functions for
depositing and withdrawing native tokens fund their account in the entryroint contract. Additionally, it includes a series of
modifiers that restrict access control for key functions to the entryroint contract and itself, allowing for potential future
implementations.

The objetive is for other contracts, such as multisigbeleGator.sol and HybridbeleGator.sol , tO inherit from this contract and override
the isvalidsignature function to enable custom validation during validateuserop for ERC4337 transactions.

3.3 MultiSigDeleGator.sol

MultiSigbeleGator €xtends the functionality of pelesatorcore , Overriding its isvalidsignature to provide multi-signature capabilities to
the contract. The contract also includes additional functions to manage the state of signers eligible to sign ERC4337 transactions
and Dpelegations , and implements UUPS (Upgradeable Universal Proxy Standard) functionality.

3.4 HybridDeleGator.sol

HybridDeleGator.sol enhances the capabilities of pelecatorcore by overriding its isvalidsignature function to support multiple
signature schemes. This allows users to create accounts that do not solely rely on the traditional ECDSA secp256k1 curve for
public key recovery. Users can store one or more public keys, including P256 public keys, and sign ERC4337 transactions and
Delegations USing raw P256 signatures or WebAuthnP256 signatures.

The contract also includes additional functions to manage the state of the stored public keys and implements UUPS
(Upgradeable Universal Proxy Standard) functionality.

4 Security Specification

41 MultiSigDelegator

Actors:
1. Entry Point:

The entry point contract represents a valid call from the owners of the MultiSig account(signers). If enough signers (compared to
the threshold) have signed the ERC4337 transaction, the entry point will call the MultiSig account with the calldata provided in the
ERCA4337 transaction on behalf of the signers .

For this reason, functions with the onlyentrypointorself and onlyentryPoint modifiers can not only manipulate the state of the
MultiSig contract but also call other contracts on behalf of the MultiSig at will.

If the number of signers equal to the recorded threshold have signed the ERC4337 transaction, the entry point contract can:

e Execute any action on behalf of the MultiSig (including calling delegationManager.redeembelegation for other pelegations wWhere the
MultiSig is appointed as a delegate)

e Execute batches of transactions on behalf of the MultiSig

e Validate a pelegation on-chain (where the MultiSig is the delegator) SO that the delegate doesn’t have to provide the signatures
that attest that the pelegation was authorized by the MultiSig signers

e Disable a pelegation on-chain, preventing other users with the pelegation and a valid array of signatures that attest that the
Delegation Was authorized by the MultiSig from using that signed Dpelegation iN delegationManager.redeembDelegation .

e Change the implementation contract in the proxy, having the possibility of retaining the DeleGator storage or clearing it
e Add signers

e Remove signers

e Replace signers

e Update threshold

e Fund the MultiSig account in the entryPoint contract through addbeposit function

e Withdraw funding from the entry point contract through withdrawbeposit function

e Fund the MultiSig account with native tokens

2. DelegationManager :

The bpelegationManager is an actor that represents an external user who has provided

e An action to be executed by the MultiSig

e A pelegation chain that attests that the action provided by the user is valid based on the caveats that are imposed in the
Delegation chain, and links the root delegator(MultiSig) and the leaf delegate(external user).

Under these circumstances, the DelegationManager will call the function executedelegatedaction from the root delegator (multiSig),
executing the action provided on behalf of the MultiSig account.

Note: The bpelegationManager is pausable, so this functionality is restricted to when the bpelegationManager iS unpaused .

3. External user:

e Fund the MultiSig account in the entryPoint contract through addbeposit function

e Fund the MultiSig account with native tokens.

Note: Users can also send ERC721 and ERC1155 tokens through safeTransfer to the MultiSig since it implements

TokenCallbackHandler .

4.2 HybridDeleGator:

Actors:
1. Entry Point:

The entry point contract represents a valid call from the owner of the account, based on the public keys registered in the
HybridDeleGator contract. An ERC4337 transaction is considered valid if it recovers one of the public keys or the EOA registered in
the Hybridbelecator contract, using the appropriate signature schemes.

For this reason, functions with onlyEntryPointorself and onlyentryPoint modifiers can not only manipulate the state of the
HybridbeleGator contract but also call other contracts on behalf of the Hybridpelescator at will.

If the ERC4337 transaction is proven valid, the entry point contract can:

e Execute any action on behalf of the Hybridpelecator (including calling delegationManager.redeembelegation for other pelegations
where the HybridbeleGator iS appointed as a delegate)

e Execute batches of transactions on behalf of the HybridbeleGator

e Validate a pelegation on-chain (where the uybridbelecator is the delegator) so that the delegate doesn’t have to provide a
signature that attests that the pelegation was authorized by the HybridbeleGator owner

e Disable a pelegation On-chain, preventing other users with the pelegation and a valid signature that attests that the bpelegation
was authorized by the Hybridbelecator from using that signed pelegation iN delegationManager.redeembDelegation

e Change the implementation contract in the proxy, having the possibility of retaining the DeleGator storage or clearing it
e Add keys

e Remove keys

e Update the keys and the owner

e Transfer ownership

e Renounce ownership

e Fund the Hybridpelecator account in the entryPoint contract through addpeposit function

e Withdraw funding from the entry point contract through withdrawbeposit function

e Fund the HybridpeleGator account with native tokens
2. owner :

The owner is an address recorded in storage, ideally an EOA to take advantage of its functionalities, that can sign transactions
with Secp256k1 curve signature scheme. In _isvalidsignature , if the signature bytes have a length of 65, it will try Ecpsa.recover to
verify that the 4337 transaction is indeed authorized by the owner . The Hybridbelecator expects the rest of the signatures to follow
the Secp256r1 curve signature scheme.

3. DelegationManager :

The bpelegationManager iS an actor that represents an external user who has provided

e An Action to be executed by the HybridbeleGator

e A pelegation chain that attests that the action provided by the user is valid based on the caveats that are imposed in the
pelegation chain, and links the root delegator(nybridoelecator) and the leaf delegate(external user).

Under these circumstances, the DelegationManager will call the function executedelegatedaction from the root delegator (
HybridDeleGator), €xecuting the action provided on behalf of the Hybridbelecator account.

Note: The bpelegationManager is pausable, so this functionality is restricted to when the bpelegationManager iS unpaused .

4. External user:

e Fund the Hybridpelecator account in the entry point contract through addbeposit function

e Fund the HybridbeleGator account with native tokens

Note: Users can also send ERC721 and ERC1155 tokens through safeTransfer to the Hybridbelecator since it implements

TokenCallbackHandler .

4.3 DelegationManager:

Security Properties

1. Delegation Validation:

o Delegations can be cached on-chain to avoid having to provide a signature that validates a pelegation off-chain.
o Delegations can be validated and executed through the redeembelegation function.

o Only the delegator can cache (delegate), disable (disablebelegation), Or enable (enablebelegation) a delegation.

2. Signature Verification:

(0]

Off-chain delegations must be signed by the delegator and are validated at the time of execution.

(0]

The contract supports EOA (Externally Owned Account) and contract-based delegators.

(0]

For EOA delegators, the contract uses ECDSA signature recovery to verify the signature.

o

For contract-based delegators, the contract uses the isvalidsignature function defined by the IERC1271 interface.
3. Delegation Chain Validation:

o Delegations are ordered from leaf to root, with the last delegation in the array having the root authority.

o Each delegation in the chain must be validated against its parent delegation, ensuring the authority and delegate are
correctly set.

4. Caveat Enforcement:

o Caveats are enforced in a specific order: beforeHook from leaf to root, execute action, aftertook from root to leaf.

o Each caveat enforcer can add additional checks or restrictions before and after the action is executed.
5. Modifiers:

o onlybeleGator : Ensures that only the specified delegator can call certain functions.
o onlyowner : Ensures that only the contract owner can call certain administrative functions.

o whenNotPaused : Ensures that functions can only be executed when the contract is not paused.
6. Pause Functionality:

o The owner can pause and unpause the delegation redemption functionality using the pause and unpause functions.

o When paused, the redeembelegation function cannot be executed.
Actors:

1. Owner :

The owner of the contract is set during construction and can:

e Pause and Unpause the redeembelegation function.
e Transfer Ownership of the bpelegationManager contract to another address.

¢ Renounce Ownership, transferring the ownership to address(e) .
2. delegator:

Some functions have an onlybelegator modifier that ensures these functions can only be called by the delegator specified in the
Delegation Provided as an argument. Under these circumstances, the delegator can:

® delegate , marking the delegationHash. on-chain as a valid delegation.
® disableDelegation , Marking the delegationHash_. ONn-chain as an invalid delegation.

® enableDelegation , reversing the process described in disablebelegation .

3. External user:

Any account can call redeembelegation and execute an action on behalf of the root delegator , if a valid delegation chain and a valid
action are provided.

5 Findings
Each issue has an assigned severity:

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e 'Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

5.1 Important Points to Consider and Keep in Mind wedium ~ acknowledged

Description

Granting someone else control over one’s own account - even if the intention is to have limitations in place - is an inherently
dangerous operation. Hence, it is of crucial importance that users have a thorough understanding of the system, so they know
exactly what they’re doing. In the following, we list just a few points that might not be entirely obvious but are important to
consider and keep in mind. We are not trying to achieve completeness but merely want to illustrate the importance of
understanding the system in detail.

e Caveats limit what a delegator can do. This is achieved via enforcer contracts. Many of these enforcer contracts are low-level
and of a technical nature. It is essential to understand what they do and don’t achieve. Several findings below discuss subtle
aspects of particular enforcers in more detail.

The behavior of an enforcer is controlled by the terms it is given — a low-level bytes sequence that is decoded into
parameters. Obviously, getting these terms right is key to actually enforce the desired restrictions, but the low-level and
enforcer-specific encoding makes that difficult to assess. Special care has to taken in crafting enforcer terms .

Finally, it is crucial to be aware of the fact that delegations are unrestricted by default: Unless caveats are added, everything
is allowed!

e Delegations can be revoked at any time by the delegator - possibly even in a front-running manner. Hence, there is no
guarantee for the redeemer that the action will be executed; the transaction can revert and the gas be lost. Revoking a
delegation could either happen “regularly” via disablebelegation Or, more subtly, by making the isvalidsignature call fail (in case
of a contract delegator) or by making a call to an enforcer fail (if the delegator has control over that). It should also be noted
that this applies not only to the root delegator but to any delegator along a delegation chain.

e Offchain delegations are validated every time the delegation is redeemed, while onchain delegations remain valid until
explicitly disabled. To illustrate this difference, let us consider a multisigpelecator With Alice, Bob, and Carol as signers and
threshold 2. Assume Alice and Bob both sign a delegation. This offchain delegation can be redeemed successfully as long as
the configuration of the wmultisigpelecator doesn’t change. If, however, the threshold is increased to 3 or Bob and Carol kick
Alice out of the multisig, future redemptions of this delegation will fail (until, perhaps, the configuration changes again). If, on
the other hand, Alice and Bob create an onchain delegation, it stays valid even if the threshold is increased or Alice leaves the
multisig; it can only be explicitly disabled.

e In a multiSigbeleGator , the threshold is enforced for delegating, but a single party is sufficient for the redemption of a
delegation. Consider, for instance, a multisigbelecator With Alice and Bob as signers and threshold 2. Both Alice and Bob have
to agree in order for a delegation to Carol to become valid, but after that, Carol alone can use the delegation to execute
actions on the Alice-Bob multisig. Since that effectively bypasses the threshold , a reasonable delegation from a

MultiSigDeleGator Will, in most cases, include caveats.

e While they look very similar at the surface level, there is a crucial difference between root and non-root delegations. The root
delegator delegates access to their own account, while further delegations along the chain just re-delegate the rights that
have been granted, possibly adding further restrictions through caveats. From a different angle, this means that delegators
have to make sure they’re not accidentally signing a root delegation - and, therefore, access to their own account - when all
they want to do is re-delegate another delegation. Root delegations have authority

OxFF , While for non-root delegations, the authority is the hash of the
previous delegation.

e The redeemer of a delegation chain can (to the extent permitted by the caveats) freely choose the time of redemption and
can also influence the chain state for a redemption or wait for a particular state that is considered favorable. Hence, by their
very nature, delegations are susceptible to front-running, back-running, and sandwiching attacks by the redeemer.

e Delegators along a delegation chain can freely choose the contracts they use as “enforcers”. Hence, just like the redeemer,
they can also front- and back-run and launch sandwiching attacks. As a general rule, any delegator along a delegation chain
can make arbitrary calls (with the right enforcers in place), including other delegation redemptions.

Recommendation

As mentioned above, this list is not meant to be exhaustive. It is crucial to understand the system in depth in order to be aware of
these and other consequences of its design.

5.2 Delegators Can Abuse Gas for Their Own Purposes widium Acknowledged

Resolution

Client’'s comment:

We're aware of that and will keep an eye on it, but we're not making any changes for the time being.

Description
When a delegation is redeemed, delegators can abuse gas for their own purposes. This could happen in the following ways:

1. For contract delegators, their isvalidsignature function is called during redemption. Since thisis a view function, the compiler
inserts a staticcaLL , which makes state changes impossible and, therefore, an attack less interesting. Gas griefing, i.e., just
guzzling up all the gas to make the transaction revert, is well possible, though.

2. Delegators can freely choose the enforcer addresses for their caveats. It is conceivable that they add a caveat to their
delegation with an “enforcer” that does useful, gas-intensive work for them. Gas griefing is possible too, but “stealing gas” for
their own purposes is even more interesting, obviously.

3. Root delegators have more power than other delegators along a delegation chain. Even if they start with a regular
MultiSigDeleGator OF HybridDeleGator Proxy, they could still upgrade to an arbitrary contract. Or they could directly start with an
implementation of their own. Hence, they are in complete control of the root account and can do anything they want with
the incoming call and gas. See also issue 5.3 for a related discussion.

Recommendation

(1) could be mitigated by sending only a fixed amount of gas with the isvalidsignature call, but that would also limit honest
signature verification and is, strictly speaking, not compliant with ERC-1271. One might try to tackle (2) with an enforcer allowlist,
but that would limit the system’s flexibility, and depending on the enforcer, there can still be variants of this attack via the terms
and/or args . For instance, the Erc2eallowanceEnforcer makes a call to the token address given in the terms . In this case, itis a
STATICCALL , but it is conceivable that a different enforcers might want to make state-changing calls to an address supplied in the

terms .

It is the system’s design and nature that many different parties are involved in the redemption of a delegation chain and are
handed control over what’s happening. Therefore, it is probably difficult and/or would require inconvenient restrictions that limit
the system’s versatility to get rid of this problem entirely. The countermeasures outlined in the previous paragraph could be
considered, but they have limitations and/or downsides. At the very least, gas sent with a transaction should be closely
monitored, and users should be aware of the abuse scenarios outlined above.

https://eips.ethereum.org/EIPS/eip-1271#security-considerations

5.3 No Guarantee That Action Is Executed Even if Transaction Succeeds wediim acknowledged

Resolution

Client’'s comment:

We are aware of this and users can leverage afterHook of a caveat enforcer to validate actions.

Description

It is possible that a redeembelegation call succeeds, all caveats along the delegation chain are processed successfully, but the
action is not executed. That is because the root delegator could upgrade their account to a different implementation that silently
ignores the executebelegatedaction call from the delegation manager or does something else entirely. Or, without upgrading, an
account contract that behaves in this way could be used right from the start.

This is, in and of itself, an important fact to be aware of, but it has also consequences for stateful enforcers because the state
changes in them will persist in such a case.

Examples

e A contract deployed through the bpeployedenforcer Will continue to exist - which is probably not a bad thing, except that the
redeemer paid the gas for the transaction including this deployment without getting the action executed.

e The Eerc2eallowanceEnforcer Will increase the spent amount (i.e., reduce the remaining allowance) in such a case, even though
the action with the transfer doesn’t happen.

e Similarly, the Limitedcallsenforcer Will count the use of this delegation, and the Nonceenforcer will mark the nonce as used.

Recommendation

While this is definitely - and at the very least - something to keep in mind, the consequences with the enforcers that are in scope
for this review don’t seem too grave. However, for other enforcers, it may be a more serious problem, depending on their design.

The issue could be prevented as follows: The delegation manager approves certain implementation contracts (that execute the
action as intended). Before calling executedelegatedaction On the root delegator’s account, the delegation manager verifies the
following:

1. The codehash at the account address matches the only allowed proxy contract code.

2. The proxy uses an implementation contract that has been approved on the delegation manager. For this to work, a proxy
contract has to be used (by all DeleGator accounts) that retrieves the implementation’s address with code on the proxy. That
is currently not the case. This solution would also make the system a bit more permissioned, as implementations would have
to be approved by the owner of the delegation manager.

Remark

See also issue 5.2 for a related discussion.

5.4 ERC20BalanceGteEnforcer : Lock Mechanism Insufficient wedium

Description

The current implementation of the Erc2eBalanceGteEnforcer contains a potential flaw when handling several pelegations from the
same delegator . Specifically, if the delegator creates several pelegations in the delegation chain that call the EerczeBalanceGteEnforcer
with the same token , the lock mechanism fails to prevent double counting of the token balance difference. This results in
incorrect enforcement of the balance requirements, as the same balance difference might be counted for multiple delegations.

The issue arises because the locking mechanism only uses the delegation hash as key, while the balance caching uses the
delegator and the token - and the latter can be the same for different delegations and, therefore, delegation hashes.

DeleGator/src/enforcers/ERC20BalanceGteEnforcer.sol:L15-L17

mapping(address delegationManager => mapping(address delegator => mapping(address token => uint256 balance))) public
balanceCache;
mapping(address delegationManager => mapping(bytes32 delegationHash => bool lock)) public islLocked;

DeleGator/src/enforcers/ERC20BalanceGteEnforcer.sol:L26-L42

function beforeHook (
bytes calldata _terms,
bytes calldata,
Action calldata,
bytes32 _delegationHash,
address _delegator,

address
)
public
override
{
require(!isLocked[msg.sender][_delegationHash], "ERC20BalanceGteEnforcer:enforcer-is-locked");
isLocked[msg.sender][_delegationHash] = true;

(, address token_) = getTermsInfo(_terms);
uint256 balance_ = IERC20(token_).balanceOf(_delegator);
balanceCache[msg.sender][_delegator][token_] = balance_;

DeleGator/src/enforcers/ERC20BalanceGteEnforcer.sol:L49-L64

function afterHook(
bytes calldata _terms,
bytes calldata,
Action calldata,
bytes32 _delegationHash,
address _delegator,
address

public
override

delete islLocked[msg.sender][_delegationHash];

(uint256 amount_, address token_) = getTermsInfo(_terms);

uint256 balance_ = IERC20(token_).balanceOf(_delegator);

require(balance_ >= balanceCache[msg.sender][_delegator][token_] + amount_, "ERC20BalanceGteEnforcer:balance-not-gt");

To illustrate with a concrete example:

1. A delegator creates a delegation (D1) with a caveat that executes calls to the Eerc2eBalancecteEnforcer for a certain token. He is
appointed as a delegate in another delegation in the delegation chain and creates another delegation (D2) with the same
token as D1 with intentions to increase his balance by another amount stipulated in the terms.

2. The delegate of this second delegation (D2) executes redeemdelegation With the previously mentioned delegation chain.

3. The beforetook of D2 (leaf to root) sets a lock using the delegation manager and D2’s delegation hash, the token state is
recorded in balancecache .

4. The lock does not prevent D1 from executing because it considers the D2 delegation hash, creating a second lock based on
D1's delegation hash and records balancecache a second time. We assume no transfer has occurred yet, so the recorded
balance does not actually change.

5. The action is executed and entails a token transfer to the delegator that is at least as high as the higher of the amounts
requested in the two ERc2eBalanceGteEnforcer terms. (For simplicity, we may assume they’re both the same.)

6. The aftertook is executed from D1 (root to leaf) and the D1 lock is deleted. The balance after execution is compared with the
balanceCache Vvariable +the amount stipulated in the terms; the check passes.

7. The aftertook from D2 is executed, the D2 lock is deleted and the balance after execution is compared with the balancecache
variable + the amount stipulated in the terms again; this check passes too.

The balance change would therefore be counted twice, once for each delegation, leading to enforcement errors.

The example may seem a bit contrived because the same delegator appears twice in the delegation chain; however, there is
nothing that prevents such delegation chains. Moreover, there are similar scenarios, based on reentrancy, that don’t require this.
For example, the action could redeem another delegation chain, which includes a delegation with the same delegator and token
but different delegation hash.

So we have established that using the delegation hash as key for the lock is not sufficient, and we should instead use the same
key as balancecache , Which is delegator and token - in addition to msg.sender , Which is the delegation manager. Are we good then?
Unfortunately, not! A similar “double count” scenario as above could arise for the same delegator and token but with different
delegation managers. Unlike in the examples above, we would then set and check different entries in the balancecache mapping
(and have different locks, of course), but we would still accept the balance change for the delegator address twice. And just
leaving the msg.sender out of the keys to solve this is not a good idea, as that would allow anyone to set a lock and never release it
again.

Recommendation

We will address this problem together with another one in issue 5.5. The (somewhat limiting) solution will be to always use a fresh
address to receive payments to in the Erc2eBalanceGteEnforcer .

5.5 ERC20BalanceGteEnforcer : Separate Address Needed for Payment wiedium

Description

The Erc2eBalanceGteEnforcer , from a technical perspective, enforces that the delegator’s balance (of a particular token given in the
terms) has increased by a certain amount (that is also encoded in the terms) when the aftertook is executed compared to when
the beforetoook Was executed. The probable intention is to make sure that some form of payment happened between beforeHook
and and aftertook . That might be the intention to get paid for using the delegation, but the enforcer leaves that open, so let’s just
call it the “intended payment.” Any other token transfer that occurs would be called a “side payment.”

An example scenario for a side payment could be the following: The delegator has withdrawable funds in a contract that
implements a pull pattern, where the address to transfer the funds to is fixed - in our case that would be the delegator’s address -
but anyone can execute the transfer. An actor with the intention to “fake the payment” would withdraw these funds to the
delegator’s address beween beforeHook and afterHook . Or there could be a contract the delegator has interacted with in the past
that pays some form of reward, and the owner/admin of this contract (or whoever can initiate the reward payout) gets control of
execution between beforedook and afterdook and pushes out the reward; that could happen in an enforcer or in the action -
directly or indirectly. These examples do not assume that the delegator is the root of the delegation chain, but if that is the case,
it seems even more plausible that the action - which is executed from the root delegator’s account - can, in some way or other,
lead to a token transfer that the delegator would not see as intended payment.

Recommendation

While these scenarios might seem vague or far-fetched, there may very well be highly plausible ones we can’t think of now. In any
case, we believe that the argument shows that the enforcer — while it technically does what it promises, i.e., ensure that the
delegator sees a certain balance increase between beforeHook and afterHook — can’t ensure that the intention behind the use of

this enforcer is met under all circumstances. Currently, it falls upon the delegator to use this enforcer only if they can guarantee
that any transfer that could possibly happen between beforetook and afterdook Would be the intended payment. That can be
difficult or impossible for a regularly used account.

Taking also into account the so far unresolved issue 5.4, we suggest the following: The terms should be extended with another
address parameter paymentaddress . As the name suggests, this is the address the delegator expects the payment to. It should be a
fresh address that has never been used before and is only used for this purpose, in this particular delegation, on this particular
delegation manager. The user should be educated accordingly and instructed to provide a fresh address. Use cases that don't
allow a freely chosen address, i.e., the delegator (as a person) expects a payment necessarily to their delegator address (as in the
Delegation Struct), should not be supported at all due to the risks described above and in issue 5.4.

One could go as far as requiring in the contract that the provided payment address is different from the delegator address to
protect users from accidental misuse. However, just because the target address is different from the delegator address doesn’t
guarantee it's a fresh address in the sense above. So it’s unclear how useful that would be.

Obviously, the balance checks shouldn’t occur for the delegator anymore but for the new paymentaddress . The mappings should be
defined as follows and used accordingly:

mapping(address delegationManager => mapping(address delegator => mapping(address token => mapping(address paymentAddress => u
mapping(address delegationManager => mapping(address delegator => mapping(address token => mapping(address paymentAddress => b

5.6 AllowedCalldataEnforcer : Must Only Be Used for Static Types wsdium

Description

Several enforcers have a technical name and specification, but they're most likely used with a specific intention in mind. To make
sure they don’t just work on a technical level but fail to enforce the intention, certain usage restrictions might apply, certain
preconditions might have to be met or some subtleties considered when they’re used.

The allowedcalldataEnforcer , from a technical perspective, enforces that a certain substring of the action’s data part is a specific
byte sequence. The start position in the data , the length of the substring, and the expected byte sequence are supplied as terms
to the beforeHook .

DeleGator/src/enforcers/AllowedCalldataEnforcer.sol:L37-L47

uint256 dataStart_;
uint256 bytelength_;
bytes memory value_;
bytes memory calldataValue_;

(dataStart_, byteLength_, value_) = getTermsInfo(_terms);
require(dataStart_ + byteLength_ <= _action.data.length, "AllowedCalldataEnforcer:invalid-calldata-length");

calldataValue_ = _action.data[dataStart_:dataStart_ + bytelLength_];

require(_compare(calldataValue_, value_), "AllowedCalldataEnforcer:invalid-calldata");

From a higher-level perspective, the typical use case is probably to restrict function arguments to specific values. For instance,
assume we have a function whose first parameter is a uint2s6 . Then we could utilize an allowedcalldataEnforcer to restrict this
argument to the number 42: The start position in the action’s data would be 4 (bytes 0-3 are the function selector), the length
would be 32 bytes, and we'd provide
0x002A as expected byte sequence.

Most likely, the AllowedcalldataEnforcer Will be combined with an allowedTargetsenforcer to only allow calls to a specific address and
an AllowedMethodsEnforcer tO make sure we can only call a specific function on the target contract. To give a concrete example, with
an AllowedTargetsEnforcer , aN AllowedMethodsEnforcer , and an AllowedCalldataEnforcer , We can enforce that the action is a WETH transfer
to a specific address. In this example, any transfer amount is allowed, but with an additional allowedcalldataEnforcer we could also
restrict the amount to 1 WETH, say. (The astute reader may have noticed that in this particular example, there are optimization
possibilities because the two arguments are consecutive and directly follow the selector, so that we could get away with an
AllowedTargetsEnforcer and a single AllowedCalldataEnforcer)

However, there is a subtle point to how Solidity encodes and decodes data. While there is a standard encoding, called strict
encoding, the Solidity ABI-decoder, which is responsible in a contract to decode the calldata into function arguments, accepts
not only this strict encoding but is more lenient. We recommend studying the Contract ABI Specification for the details, but the
gist is that the argument for a dynamic-type parameter can’t be found at a fixed place in the calldata. And conversely, reading
from a fixed place in the calldata does not necessarily give us what later becomes the argument in the function.

After we have given an example above what works, we will now see an example that doesn’t. Assume we have a contract
deployed at address A that implements the following functions :

function foo(uint256 num, string calldata str) external { ... } ,
function bar(address addr, uint256[] memory arr) public { ... }

Here, it is not possible to use an AllowedTargetsEnforcer , @N AllowedMethodsEnforcer , aNd an AllowedCalldataEnforcer tO ensure that the
action is a call to address A of the function foo with the string “hello” for str (or that str starts with “hel” or that str hasa
certain length). Similarly, it is not possible to enforce that we're calling bar with an array of length 5 or with 42 as first element of
the array. This is because string anf uint256[] are dynamic types. It is important to understand that these restrictions could be
completely bypassed! On the other hand, enforcing that num is 42 ina foo call or that addr is a specific address is possible
because uint256 and address are static types.

Recommendation

To use the allowedcalldataEnforcer correctly, it is crucial to understand these limitations and, more generally, the technical details of
how ABI-encoding and -decoding works. Again, we refer to the Solidity documentation for a deep dive. A highly important lesson

https://docs.soliditylang.org/en/v0.8.23/abi-spec.html#strict-encoding-mode
https://docs.soliditylang.org/en/v0.8.23/abi-spec.html
https://docs.soliditylang.org/en/v0.8.23/abi-spec.html

is that the allowedcalldataEnforcer must only be used for static types.

Remark

We won't go into details, but for the sake of completeness, it should be mentioned that the goals we described above (for the not
working examples) could still be achieved with a sequence of allowedcalldataEnforcers that also enforces strict encoding, i.e., we'd
“enforce the pointers” too. That is, however, tedious and error-prone, and - again - requires intricate knowledge of the details of
ABl-encoding and -decoding. The important message of this finding is that the “straightforward” way does not work and can be
completely bypassed.

5.7 DeleGatorCore : Implementation Contracts Should Not Support Interfaces and Not Accept
Tokens

Description

DeleGator accounts are proxies, and accounts of a particular type (such as multisigbeleGator Or HybridDeleGator) Share a common
implementation. Every account type should inherit from pelecatorcore . State-changing functions shouldn’t be executable directly
on the implementation contract. Calling view functions directly on the implementation makes often no sense and the information
returned could be useless or even misleading and lead to unwanted results.

An example of this is the supportsinterface function in pelecatorcore . This function is used to inform the caller whether the called
contract supports certain functionalities:

It gives the correct result on the proxy, but the implementation should not claim to support any of these interfaces (with the
possible exception of IERC165 - but that alone is fairly useless) in order to avoid misleading callers.

Similarly, the token callback handlers onerc721Received , onERC1155Received , and onERC1155BatchReceived (currently inherited from the
imported “TokenCallbackHandler) should not claim to be able to handle these token types on the implementation - because
that’s not the case, and tokens sent to the implementation contract will be stuck.

Additionally, addpeposit could be mistakenly called by a user who expects to fund his account in the entry point, accepting native
tokens that would eventually get stuck.

Recommendation

There are also other options, but a pragmatic solution to the issues outlined above is to add an on1yproxy modifier to
DeleGatorCore.supportsInterface and DeleGatorCore.addDeposit , Making these functions revert if they are called directly in the
implementation contract.

A similar approach would work for the token callback handlers, but these are defined in TokencallbackHandler from the AA
repository, and these functions are not virtual. We therefore recommend:

1. Replace these handlers with the OpenZeppelin versions, i.e., import and inherit from ERC721Holder and ERC721Holder, and
remove the import of and inheritance from the AA versions.

2. Override each handler with an oniyrroxy modifier.

3. In the body of the overriding handlers, call the same function on super .

5.8 MultiSigDeleGator and HybridDeleGator : reinitialize Function Should Be Removed
[Minor]

Resolution

Client’'s comment:

Needed for account upgrading.

Description and Recommendation

MultiSigDeleGator and HybridbeleGator LOth have a reinitialize function; reinitialize is to be called after an upgrade to a new
implementation contract, but it should be noted that it will be called on the new contract. Since the current versions of
MultSigDeleGator and HybridbeleGator are the first one, respectively, i.e., we're not upgrading from a previous version, there is
currently no need for a reinitialize function, and they can both be removed. In fact, they should be removed because some
users might call them accidentally, causing unnecessary complications for future updates.

If your intention was to offer users a way to prevent future upgrades of their proxy by setting the version number to
type(uint64) .max , @ dedicated function solely for that purpose and with a descriptive name should be added instead.

5.9 HybridDeleGator : _updateSigners Reverts Overzealously g

Description

The internal _updatesigners function in HybridpeleGator takes an owner, a list of public keys, and a boolean argument and updates
the owner as well as the signers list of the DeleGator account. The boolean argument _deleter256keys dictates whether the public
keys should just be added to the existing set (if _deleter256keys is false) or replace the existing set (if _deletep256keys is true). As
there is only one owner, it is always replaced. But the new owner can be the same as the old one, or the new owner can be
address(0) , which means there is no owner and only signers.

A situation we want to avoid is ending up without anyone who can control the SCA, i.e., whenever we make a change to the
owner and/or signers, we want to make sure that after the operation, there is at least one signer or the owner is not zero. That is
achieved with the following line, where keysLength_ is the number of public keys given to the function.

https://docs.openzeppelin.com/contracts/5.x/api/token/erc721#ERC721Holder
https://docs.openzeppelin.com/contracts/5.x/api/token/erc1155#ERC1155Holder

DeleGator/src/HybridDeleGator.sol:L300

if (_owner == address(@) && keyslLength_ == @) revert SignersCannotBeEmpty();

However, this check reverts overzealously because it doesn’t take into account that _deleteP25sskeys might be false ; in this case,
we wouldn’t replace signers - we would just add them. And adding no new signers, while setting the owner to zero is fine as long
as the current list of signers is not empty.

Recommendation

We should only revert here only if — in addition to _owner == address(8) && keysLength_ == @) being true — _deleteP256Keys IS true or the
current list of signers is empty.

510 MultiSigDeleGator : No Function to Retrieve the Number of Signers Directly czm

Description

MultisigbeleGator , While it has a view function getsigners to retrieve all current signers, does not have a view function to just obtain
the number of signers. Of course, it is possible to extract that information from the result of getsigners , but that can be inefficient
since the entire array is read from storage. It should also be noted that HybridbeleGator has a getkeyIdHashescount function in addition
to getkeyIdHashes , SO it seems likely that such a function has just been forgotten in multisigbeleGator .

Recommendation

Add a getsignerscount function to multisigbelecator that returns the current number of signers.

511 MultiSigDeleGator : Caution Regarding _addSignersAndThreshold inthe Next Version(s)
[Minor]

Description

DeleGatorCore Offers two variants of the upgradeToandcall -type function: The first one, with the (normal) name upgradetoandcall , first
clears the DeleGator’s storage (via the _clearbeleGatorstorage function, supposed to be implemented in concrete DeleGator
Account implementations) and then calls upgradeToandcall on OpenZeppelin’s uupsupgradeable contract, from which peleGatorcore
inherits. The second function, with the name upgradeToAndcallAndRetainStorage , SKips the _clearDeleGatorstorage call and does the same
otherwise. The idea here is to offer a version with full flexibility to modifiy the proxy’s storage during an upgrade and a more
lightweight version for minor upgrades that don’t need (significant) storage changes.

We discussed in issue 5.8 that the reinitialize functions should be removed in the first version of multisigpelecator and
HybridDeleGator , respectively. However, their current implementation indicates that the internal functions to be called for
reinitialization will Iikely be _addSignersAndThreshold (fOI‘ MultiSigDeleGator) and _updateSigners (fOI’ HybridDeleGator) While _updateSigners
takes a boolean argument _deleteP256keys that determines whether the existing signers should be removed before the new ones
are added, _addsignersandThreshold deletes the existing signers unconditionally. Hence, _addsignersandThreshold , in its current form,
wouldn’t be compatible with upgradeToandcalilandretainstorage , Which intentionally leaves the current signers untouched.

Recommendation

This is not a problem in and for the current version of the contract (and the reinitialize functions should be removed, as
mentioned in issue 5.8). It should, however, be considered for the next version(s). Possibly, a boolean argument for
_addSignersAndThreshold — aS in HybridDeleGator._updateSigners — will be useful.

Regardless of this particular concern, the new versions of the contracts will have to be reviewed in their entirety, not only but also
with respect to their suitability for upgrades from the current version.

512 DelegationManager : 2-Step Ownership Transfer and Renouncing Ownership ¢zm

Description
Ownable VS. Ownable2Step :

The DpelegationManager has a contract owner whose privilege it is to pause and unpause delegation redemptions. Ownership is
implemented via OpenZeppelin’s ownable , which is a well-established solution for the task at hand. The downside of ownabie is that
is relatively easy to leave the contract unintentionally without owner access by accidentally transferring ownership to a wrong
address.

Therefore, an improved version — ownable2step — has been devised that implements a 2-step ownership transfer. More specifically,
ownership is first tentatively transferred to a new address by the current owner, and the new owner has to accept ownership first
before the transfer is concluded. Until this happens, the old owner is still in control, has all owner privileges the contract offers,
and can abort the transfer or choose a different address to tentatively transfer ownership to. This pattern reduces the risk of
accidentally losing owner access to the contract.

Renouncing Ownership:

Renouncing ownership when the contract is paused means retiring the contract and ensuring that delegations can’t ever be
redeemed again. Unless this happens accidentally, that might be a desirable effect if, for instance, a critical bug in redeembelegation
is found. In that case, users can be sure that redemptions are not possible anymore and will never become possible again.

Renouncing ownership when the contract is not paused means it can never be paused (again). There is probably little or even no
use for that, and it would prevent retiring the contract as described in the previous paragraph.

Recommendation

1. Consider replacing ownable Wwith ownable2step .

2. Renouncing contract ownership is always a dangerous operation and should only be done after very careful consideration. In
particular, pay close attention whether the contract is paused or not.

https://docs.openzeppelin.com/contracts/5.x/api/access#Ownable
https://docs.openzeppelin.com/contracts/5.x/api/access#Ownable2Step
https://docs.openzeppelin.com/contracts/5.x/api/access#Ownable
https://docs.openzeppelin.com/contracts/5.x/api/access#Ownable2Step

513 DeployedEnforcer : Possibility for Better Protection Against Usage Mistakes (rm

Description

The intention of the peployedenforcer is to make sure that a certain contract has been deployed to a specific address. The target
address and the calldata for a factory call comprise the terms for this enforcer; contrary to what the NatSpec annotation says, the
factory address is not part of the terms but supplied as constructor argument.

The enforcer employs a codesize-based check to determine if the contract “is already there” or, if not, that it has been
successfully deployed by the factory. Hence, the underlying assumption is: If there is code at all, it is the right code. For this to
work reliably, the target address has to be a CREATE2 address (or we'd have to take a closer look at the factory contract) because
with CREATE2, the deployment address is tied to the code to be deployed.

In summary, the enforcer works reliably if used correctly (i.e., with a CREATE2 address), but in and of itself, it does not guarantee
that the target address has the right code. A simple example: Assume the user gets the target address in the terms wrong and
accidentally chooses an address that happens to have code but is not the right contract. In that case, the enforcer hook would
return successfully. While all enforcers rely on being used correctly, the bpeployedenforcer could offer better protection against
usage mistakes by employing codehash-based checks instead of codesize-based ones. More specifically, the terms would also
have to contain the codehash that is expected at the target address, and the actual codehash there should match the
expectation.

Recommendation

There seems to be little disadvantage to adopting the codehash-based approach we outlined above, so we suggest considering
that. Independently and generally, enforcer assumptions should always be properly documented. In this case, this includes that
the target address has to be a CREATE2 address as well as the factory requirements.

514 SimpleFactory : Low-Level Code and Empty Revert grm

Description
The deploy function in simpleFactory uses assembly for deployment via create2 :

DeleGator/src/utils/SimpleFactory.sol:L17-L20

assembly {
addr_ := create2(0, add(_bytecode, 0x20), mload(_bytecode), _salt)
if iszero(extcodesize(addr_)) { revert(e, 0) }

While there is no high-level Solidity construct for this task, OpenZeppelin’s create2 library provides a convenient wrapper that has
been reviewed and tested and can be used to avoid having to deal with low-level code yourself.

Moreover, if the deployment fails, there is an assembly revert(e, 8) , which is essentially an “empty” revert. That is (1) not very
descriptive and (2) not compatible with the reverts Solidity normally generates (i.e., error and panic). (While it is possible to
generate an empty revert in Solidity with revert() , that is, in our experience, not often used in practice.)

Recommendation

In general, it makes sense to avoid using low-level code when possible. In this particular case, we recommend utilizing
OpenZeppelin's create2 library.

It should be noted that there is a small functional difference: OpenZeppelin’s create2.deploy can succeed even if the deployment
address does not end up having code (but the deployment was still successful), while the current version of simpleFactory.deploy
will revert in that case. Whether this difference is important depends on how exactly you want to use the factory. If you want to
make sure indeed that not only the deployment was successful but that you really end up with code at the deployment address,
you can still use create2.deploy and check later if the returned address has code.

515 HybridDeleGator Should Only Be Deployed on Chains That Support P256 Signature
Verification at Oxc2b78104907F722DABAc4C69f826a522B2754De4 wrm

Description and Recommendation

To ensure smooth operation, the Hybridoelecator contract should only be deployed on chains that support secp256r1 signature
verification - as specified in EIP-7212 - at address exc2b78104907F722DABACAC69F826a522B2754De4 , €ither via contract or via precompile at
that address. If that is not the case, secp2561r1 signature verification will always fail in the current codebase.

While this problem can be fixed by deploying the verifier contract later, users might get confused or unsettled by the
permanently failing signature verification, so it’s best to avoid such a situation in the first place.

Ideally, this check would be part of the deployment script. It is, however, not sufficient to just check if the codesize at the address
above is non-zero, since addresses with precompiles have codesize O. Hence, a functional check is necessary, i.e., can a valid
signature actually be verified?

5.16 Missing Events ¢
Description

It is well-known that events are not important for the contracts (and can, in fact, not even be read by a contract), but they're
important to keep “the outside world” informed about state changes and, well, events on the contracts. In general, state-
changing functions should emit an event to have an audit trail and enable monitoring of smart contract usage.

The DeleGator codebase is a bit inhomogeneous with respect to events. While some contracts such as multisigbeleGator ,
HybridDeleGator (excluding the inherited pelecatorcore in both cases), are well-equipped with events, the state-changing enforcers
show a mixed picture with the occasional event missing or unindexec parameters that should be indexed. The DpeleGationManager

https://eips.ethereum.org/EIPS/eip-1014
https://docs.openzeppelin.com/contracts/5.x/api/utils#Create2
https://docs.openzeppelin.com/contracts/5.x/api/utils#Create2
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/dbb6104ce834628e473d2173bbc9d47f81a9eec3/contracts/utils/Create2.sol#L31-L59
https://eips.ethereum.org/EIPS/eip-7212

has, one the one hand, events for storing delegations onchain as well as for disabling and enabling delegations, but it does not
emit an event when a delegation is redeemed - arguably the most central piece of functionality the contract offers. Finally,
peleGatorCore , the contract all DeleGator account implementations should inherit from, lacks events for important operations such
as executing an action, deposits, withdrawals, etc.

Recommendation

We recommend a comprehensive and careful internal review of the entire codebase with respect to events. Determine which
events are missing; these should then be implemented and tested. Make sure event parameters are indexed appropriately. For
important parameter changes, it can make sense to emit both the old and the new value.

517 DeleGatorCore and Related Contracts: Miscellaneous Minor Points g™

DeleGatorCore

A1. Unnecessary return in functions:

The following functions have a return statement but lack a return type declaration in their definition. Since there is nothing to
return, the return statement is unnecessary:

DeleGator/src/DeleGatorCore.sol:L228-L230

function delegate(Delegation calldata _delegation) public onlyEntryPointOrSelf {
return delegationManager.delegate(_delegation);

}

DeleGator/src/DeleGatorCore.sol:L239-L241

function disableDelegation(Delegation calldata _delegation) public onlyEntryPointOrSelf {
return delegationManager.disableDelegation(_delegation);

}

DeleGator/src/DeleGatorCore.sol:L251-L253

function enableDelegation(Delegation calldata _delegation) public onlyEntryPointOrSelf {
return delegationManager.enableDelegation(_delegation);

}

A2. Incorrect NatSpec annotations:

The NatSpec annotations for disablebelegation and enablebelegation Say that “Delegations must be stored onchain to be
enabled/disabled” and that these methods “must be executed through a UserOp”.

DeleGator/src/DeleGatorCore.sol:L232-L238

VAT

@notice Disables a delegation from being used

@dev Delegations must be stored onchain to be enabled/disabled

@dev This method can only be called by the entry point contract or the contract itself, so it must be executed through a
UserOp

@param _delegation The delegation to be stored

* % Sk % %

*/

DeleGator/src/DeleGatorCore.sol:L243-L250

[**

@notice Enables a delegation to be used

@dev Delegations only need to be enabled if they have been disabled

@dev Delegations must be stored onchain to be enabled/disabled

@dev This method can only be called by the entry point contract or the contract itself, so it must be
executed through a UserOp

@param _delegation The delegation to be stored

* ¥ % F F F

Both are not correct. Offchain delegations can be enabled and disabled too, and these two methods can also be executed
(indirectly, via executeDelegatedaction and call to self) from the delegation manager, so not necessarily through a UserOp.

A3. The onlySelf modifier is never used:

DeleGator/src/DeleGatorCore.sol:L70-L73

modifier onlySelf() {
if (msg.sender !'= address(this)) revert NotSelf();

-

IDeleGatorCoreFull

B1. Parameter names don’t start with underscore:

DeleGator/src/interfaces/IDeleGatorCoreFull.sol:L50

function withdrawDeposit(address payable withdrawAddress, uint256 withdrawAmount) external;

ExecutionlLib

C1. executeBatch silently succeeds if given an empty array:

If that’s unwanted, it should revert in this case.

DeleGator/src/DeleGatorCore.sol:L157-L159

function executeBatch(Action[] calldata _actions) external onlyEntryPointOrSelf {
ExecutionLib._executeBatch(_actions);

}

DeleGator/src/libraries/ExecutionLib.sol:L35-L39

function _executeBatch(Action[] calldata _actions) internal {
for (uint256 i = @; i < _actions.length; ++i) {
_execute(_actions[i]);

}

C2. Explicit conversion is not necessary:

DeleGator/src/utils/Types.sol:L49-L53

struct Action {
address to;
uint256 value;
bytes data;

In execute , _action.to IS already an address , therefore the explicit conversion to address is not necessary.

DeleGator/src/libraries/ExecutionLib.sol:L20

(bool success_, bytes memory errorMessage_) = address(_action.to).call{ value: _action.value }(_action.data);

C3. Calldata value _actions.length could be cached in alocal variable.

DeleGator/src/libraries/ExecutionLib.sol:L35-L39

function _executeBatch(Action[] calldata _actions) internal {
for (uint256 i = @; i < _actions.length; ++i) {
_execute(_actions[i]);

}

518 MultiSigDeleGator : Miscellaneous Minor Points g

A. There should be a comment to clearly state the invariant:

0 < threshold <= number of signers <= MAX_NUMBER_OF_SIGNERS

B. Struct definition should be preceded by the NatSpec annotation:

/// @custom:storage-location erc7201:DeleGator.MultiSigDeleGator

DeleGator/src/MultiSigDeleGator.sol:L11-L15

struct MultiSigDeleGatorStorage {
mapping(address => bool) isSigner;
address[] signers;
uint256 threshold;

Cf. ERC-7201.
C. Unnecessary check in removeSigner function:

DeleGator/src/MultiSigDeleGator.sol:L173

if (storedSignersLength_ == || storedSignersLength_ == s_.threshold) revert InsufficientSigners();

The check storedsignersLength_ == 1 is Not necessary because we maintain the invariant:

0 < threshold <= number of signers <= MAX_NUMBER_OF_SIGNERS

https://eips.ethereum.org/EIPS/eip-7201

This means if number of signers == 1, then we have e < threshold <= 1, which implies threshold == 1 . Hence,
number of signers == threshold , SO the second condition is true tooO.

D. Misleading function name:

The function name _addsignersandThreshold invites mistakes because it suggests that the signers are simply added, but in reality the
existing signers are removed first. Something like _setsignersandThreshold seems less prone to misunderstandings. Moreover, the
preceding NatSpec annotation is wrong; it says that the function “optionally deletes the current signers”, but they are always
deleted.

DeleGator/src/MultiSigDeleGator.sol:L240-L245

[**
* @notice Adds the signers and threshold, optionally deletes the current signers
* @param _signers List of new signers of the MultiSig
* @param _threshold The new threshold of required signatures
*/
function _addSignersAndThreshold(address[] calldata _signers, uint256 _threshold) internal {

See also issue 5.11 for a related discussion.

E. Unnecessary read from storage:
It is not necessary to read the threshold from storage for the event.

DeleGator/src/MultiSigDeleGator.sol:L267-L268

s_.threshold = _threshold;
emit UpdatedThreshold(s_.threshold);

It is directly available as function argument _threshold .
F. Using uint8 instead of uint256 consumes more gas:

In _isvalidSignature , type uint8 for validsignaturecount_ and i does not offer any advantage over uint256 .

DeleGator/src/MultiSigDeleGator.sol:L304-L306

uint8 validSignatureCount_ = 0;

for (uint8 i = 0; i < signatureCount_; ++i) {

G. Storage variable is read repeatedly in a for loop:

DeleGator/src/MultiSigDeleGator.sol:L315

if (validSignatureCount_ >= s_.threshold) {

The threshold shouldn’t be read repeatedly from storage, especially since this expression will always be false except in the last
iteration of the loop, i.e., when i == signaturecount_ - 1 (if it is reached).

H. _initialize function is not necessary:

DeleGator/src/MultiSigDeleGator.sol:L339-L341

function _initialize(address[] calldata _signers, uint256 _threshold) private {
_addSignersAndThreshold(_signers, _threshold);
}

_addSignersAndThreshold could be called directly in initialize :

DeleGator/src/MultiSigDeleGator.sol:L95-L97

function initialize(address[] calldata _signers, uint256 _threshold) public initializer {
_initialize(_signers, _threshold);

}

And reinitialize should be removed. Cf. issue 5.8.
I. Consider Using EnumerableSet :

OpenZeppelin's enumerableset is a data structure that is well suited to manage the set of signers: It supports addition, removal,
number of elements (all in O(1)) and enumeration. The advantage compared to the current implementation is that removals don't
require iteration and that less low-level code is needed.

519 HybridDeleGator : Miscellaneous Minor Points g

A. Unused imports can be removed:

DeleGator/src/HybridDeleGator.sol:L6

import { MessageHashUtils } from "@openzeppelin/contracts/utils/cryptography/MessageHashUtils.sol";

https://docs.openzeppelin.com/contracts/5.x/api/utils#EnumerableSet

DeleGator/src/libraries/P256VerifierLib.sol:L6

import { Base64URL } from "../external/Daimo/utils/Base64URL.sol";

B. The struct definition should be preceded by the NatSpec annotation:

/// @custom:storage-location erc7201:DeleGator.HybridDeleGator

DeleGator/src/HybridDeleGator.sol:L15-L19

struct HybridDeleGatorStorage {
address owner;
mapping(bytes32 keyIdHash => P256PublicKey) authorizedKeys;
bytes32[] keyIdHashes;

Cf. ERC-7201.

C. Errors:

DeleGator/src/HybridDeleGator.sol:L48-L52

/// @dev Error emitted when a P256 key already exists
error AlreadyExists(bytes32 keyIdHash, string keyId);

/// @dev Error emitted when a P256 key is not stored and attempted to be removed
error KeyDoesNotExist(bytes32 keyIdHash);

It is unclear why the aireadyexists has the key ID hash as well as the full key ID as parameter, while the otherwise symmetric error
KeyDoesNotExist just takes the hash. (Also the naming is slightly inconsistent, and ailreadyexists could be renamed to KkeyAlreadyExists

)
D. Incorrect NatSpec annotations:

The NatSpec annotations for initialize and reinitialize suggest that it is not impossible to have a contract as owner for the

HybridDeleGator :

DeleGator/src/HybridDeleGator.sol:L81-L82

* @dev The owner SHOULD be an EOA. Contract owners require staking in the EntryPoint to enable signature
* verification during UserOp validation.
However, _isvalidsignature expects the owner to be an EOA, without exceptions:

DeleGator/src/HybridDeleGator.sol:L356

if (ECDSA.recover(_hash, _signature) == owner()) return ERC1271Lib.EIP1271_MAGIC_VALUE;

E. Redundant function call for value retrieval:

As removekey (and comparable functions) normally read directly from storage instead of employing public functions to read
storage values, it would probably be more consistent and gas-efficient to replace owner() with s_.owner in the following line:

DeleGator/src/HybridDeleGator.sol:L154

if (keyIdHashesCount_ == 1 && owner() == address(@)) revert CannotRemovelLastSigner();

F. Ownership can be transferred to address(0) :

OpenZeppelin's ownable.transferownership functions reverts if the new owner is address(@) ; in order to renounce ownership of the
contract, ownable oOffers the renounceownership function instead. HybridpeleGator also offers a transferownership and a renounceOwnership
function, but transferownership doesn’t revert if the new owner is zero. In order to more closely mimic the well-known OZ
functions, it might make sense for transferownership to revert too if _newowner == address(e) . (It should be noted, though, that OZ’s
transferownership Most likely reverts in order to prevent accidental renouncements. This is less of a danger in HybridbeleGator
because ownership can only be renounced if there is at least one signer left that can still control the account.)

G. Inefficient string emptiness check:

_addkey : In order to determine whether the input string is empty, it might be simpler and more natural to check if its length is zero
than to compare its hash with the hash of the empty string.

DeleGator/src/HybridDeleGator.sol:L257-L258

bytes32 keyIdHash_ = keccak256(abi.encodePacked(_keyId));
if (keyIdHash_ == keccak256(abi.encodePacked(""))) revert InvalidEmptyKey();
Note that bytes(_keyId).length gives us the length of _keyzd .

H. Unnecessary use of assembly:

It is not necessary to use assembly in order to read the first word of the bytes calldata argument _signature .

https://eips.ethereum.org/EIPS/eip-7201

DeleGator/src/HybridDeleGator.sol:L362-L365

bytes32 keyIdHash_;
assembly {
keyIdHash_ := calldataload(_signature.offset)

}

Instead, an array slice could be used - as all the enforcers do to decode the terms.

I. Consider Using EnumerableSet :

OpenZeppelin’s enumerableset is a data structure that is well suited to manage the set of key ID hashes: It supports addition,
removal, number of elements (all in O(1)) and enumeration. The advantage compared to the current implementation is that
removals don’t require iteration and that less low-level code is needed.

5.20 DelegationManager and Related Contracts: Miscellaneous Minor Points g

DelegationManager

A1. The NatSpec markers for constructor and modifier have been transposed:

DeleGator/src/DelegationManager.sol:L69-L74

//////7////////////7//////////// Modifier //////////////////////////////

[**
* @notice Initializes Ownable and the DelegationManager's state
* @param _owner The initial owner of the contract
*/

A2. OpenZeppelin's EIP712 library could be used for the domain separator computation:

DeleGator/src/DelegationManager.sol:L75-L79

constructor(address _owner) Ownable(_owner) {
CHAIN_ID = block.chainid;
DOMAIN_HASH = ERC712Lib.getEIP712DomainHash(NAME, DOMAIN_VERSION, CHAIN_ID, address(this));
emit SetDomain(DOMAIN_HASH, NAME, DOMAIN_VERSION, CHAIN_ID, address(this));

DeleGator/src/DelegationManager.sol:L256-L259

function getDomainHash() public view returns (bytes32) {
if (CHAIN_ID == block.chainid) return DOMAIN_HASH;
return ERC712Lib.getEIP712DomainHash(NAME, DOMAIN_VERSION, block.chainid, address(this));

IDelegationManagerMinimal

B1. It's unclear why this minimal interface is needed:

It should be sufficient and simpler to just have a single interface 1pelegationManager .

EncoderlLib

C1. Cyclic Import:

DeleGator/src/libraries/EncoderLib.sol:L6-L12

import { EncoderLib } from "./EncoderLib.sol";

VEZ

* @dev Provides implementations for common utility methods for Delegation.
* @title Delegation Utility Library

*/
library EncoderLib {

5.21 Enforcers: Miscellaneous Minor Points. o™

General:

A1. ERC-165 unused:

Enforcers implement ERC-165. While there is no harm in that except higher deployment costs, the motivation for that is unclear
since no contract in the DeleGator codebase makes use of that. Making a supportsinterface call in the bpelegationManager would only
have a marginal advantage (and increased gas costs due to an extra call).

A2.Unused args and redeemer_:

Currently, no enforcer hook makes use of the caveat’s args or the redeemer_ . Hence, these parameters are not used right now and
could be removed. We assume, however, that this is known and they are kept intentionally for (potential) future use.

A3. Consider using ABI-encoding:

https://docs.openzeppelin.com/contracts/5.x/api/utils#EnumerableSet
https://docs.openzeppelin.com/contracts/5.x/api/utils#EIP712

Many enforcers expect a low-level encoding for the terms ; usually, the data that makes up the terms consists of a few fixed-length
elements and these are just concatenated without padding. Most enforcers then have a gettermsinfo function, which decodes the
bytes terms into the actual argument.

Calldata array slices and the simple structure of the terms make this approach tolerable and quite readable, while also minimizing
calldata length. Nevertheless, this is an ad hoc approach with a dedicated encoding for each enforcer - while Solidity’s builtin
ABIl-encoding and ABI-decoding can be considered the standard method for encoding/decoding data.

Using this standardized way instead of self-written low-level code is worth consideration - although it should be noted that
calldata size will increase with this approach.

AllowedCalldataEnforcer

B1. byteLength_ doesn’t have to be part of the terms:

It could be inferred from the length of vailue_ . What's needed as terms is the byte sequence value_ and at what offset in the
action’s data it is supposed to start.

DeleGator/src/enforcers/AllowedCalldataEnforcer.sol:L42-L47

(dataStart_, byteLength_, value_) = getTermsInfo(_terms);
require(dataStart_ + byteLength_ <= _action.data.length, "AllowedCalldataEnforcer:invalid-calldata-length");

calldataValue_ = _action.data[dataStart_:dataStart_ + bytelLength_];

require(_compare(calldataValue_, value_), "AllowedCalldataEnforcer:invalid-calldata");

AllowedMethodsEnforcer

C1. Local variable termsLength doesn’t end with an underscore.

DeleGator/src/enforcers/AllowedMethodsEnforcer.sol:L50-L51

uint256 termsLength = _terms.length;
require(termsLength % 4 == 0, "AllowedMethodsEnforcer:invalid-terms-length");

C2. Possible Panic exception:
In beforeHook , If the length of _action.data is less than 4, _action.data[e:4] will throw a Panic exception.

DeleGator/src/enforcers/AllowedMethodsEnforcer.sol:L32

bytes4 targetSig_ = bytes4(_action.data[0:4]);

This doesn’t cause any inherent risk, but according to the Solidity documentation “Properly functioning code should never create
a Panic”. Hence, the function should first make sure that _action.data.length is at least 4 and revert otherwise.

C3. Note:

If the action’s target contract (to) doesn’t have a function with this selector but a fallback function, then the fallback function will
be executed.

AllowedTargetsEnforcer

D1. _terms.length could be cached in a local variable termsLength_.

DeleGator/src/enforcers/AllowedTargetsEnforcer.sol:L48-L56

function getTermsInfo(bytes calldata _terms) public pure returns (address[] memory allowedTargets_) {
uint256 j = 0;
require(_terms.length % 20 == @, "AllowedTargetsEnforcer:invalid-terms-length");
allowedTargets_ = new address[](_terms.length / 20);
for (uint256 i = 0; i < _terms.length; i += 20) {
allowedTargets_[j] = address(bytes20(_terms[i:i + 20]));
I+t

BlockNumberEnforcer

E1. NatSpec is wrong/misleading:

DeleGator/src/enforcers/BlockNumberEnforcer.sol:L14-L19

VEZ
* @notice Allows the delegator to specify the latest block the delegation will be valid.
* @dev This function enforces the block number range before the transaction is performed.
* @param _terms A bytes32 blocknumber range where the first half of the word is the earliest the delegation can be used and
* the last half of the word is the latest the delegation can be used.
*/

https://docs.soliditylang.org/en/latest/control-structures.html#:~:text=Properly%20functioning%20code%20should%20never%20create%20a%20Panic%2C%20not%20even%20on%20invalid%20external%20input.

1. L15: It’s not only a before-limit, it’s also an after-limit, i.e., a range.

2. L17-18: Suggest that the block numbers that constitute the range are inclusive for validity, but they’re not:

DeleGator/src/enforcers/BlockNumberEnforcer.sol:L25

require(block.number > blockAfterThreshold_, "BlockNumberEnforcer:early-delegation");

DeleGator/src/enforcers/BlockNumberEnforcer.sol:L30

require(block.number < blockBeforeThreshold_, "BlockNumberEnforcer:expired-delegation");

The same is true for lines 37 and 38:

DeleGator/src/enforcers/BlockNumberEnforcer.sol:L37-L38

* @return blockAfterThreshold_ The earliest block number the delegation can be used.
* @return blockBeforeThreshold_ The latest block number the delegation can be used.

TimestampEnforcer

F1. NatSpec is wrong/misleading:

DeleGator/src/enforcers/TimestampEnforcer.sol:L15-L19

[**
* @notice Allows the delegator to specify the latest timestamp the delegation will be valid.
* @param _terms - A bytes32 timestamp range where the first half of the word is the earliest the delegation can be used and the
* last half of the word is the latest the delegation can be used.
*/

1. L16: It's not only a before-limit, it’'s also an after-limit, i.e., a range.

2. L17-18: Suggest that the block numbers that constitute the range are inclusive for validity, but they’re not:

DeleGator/src/enforcers/TimestampEnforcer.sol:L25

require(block.timestamp > timestampAfterThreshold_, "TimestampEnforcer:early-delegation");

DeleGator/src/enforcers/TimestampEnforcer.sol:L30

require(block.timestamp < timestampBeforeThreshold_, "TimestampEnforcer:expired-delegation”);

The same is true for lines 37 and 38:

DeleGator/src/enforcers/TimestampEnforcer.sol:L37-L38

* @return timestampAfterThreshold_ The earliest timestamp the delegation can be used.
* @return timestampBeforeThreshold_ The latest timestamp the delegation can be used.

DeployedEnforcer

G1. Deviation from own style guide:

DeleGator/src/enforcers/DeployedEnforcer.sol:L4-L6

import { CaveatEnforcer } from "./CaveatEnforcer.sol";
import { Action } from "../utils/Types.sol";
import { Address } from "@openzeppelin/contracts/utils/Address.sol";

“The imports should be sorted by external dependencies an empty line and then local dependencies.”

G2. NatSpec is wrong:

DeleGator/src/enforcers/DeployedEnforcer.sol:L29-L30

* @param _terms This is packed bytes where the first 20 bytes are where the contract should be deployed, the next 20 bytes are
* the deployer factory, and the remaining bytes are the bytecode to deploy.

The factory address is set as immutable in the constructor; it’s not part of the terms .

G3. The variable name bytecode_ in beforeHook and getTermsInfo is wrong/misleading:

DeleGator/src/enforcers/DeployedEnforcer.sol:L33-L40

(address contractAddress_, bytes memory bytecode_) = getTermsInfo(_terms);
// check if this contract has been deployed yet
if (contractAddress_.code.length > 0) {

// if it has been deployed, then we don't need to do anything

return;

bytes memory result_ = Address.functionCall(factoryAddress, bytecode_);

This is not bytecode; it's the entire calldata for the factory contract. A name like factorycalldata_ would be more accurate.

ERC20A11lowanceEnforcer

H1. The sender and delegationHash should be indexed in the event IncreasedSpendMap :

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L19

event IncreasedSpendMap(address sender, bytes32 delegationHash, uint256 limit, uint256 spent);

H2. address(uint1606(bytes20(...))) can be simplifiedto address(bytes20(...)):

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L71

allowedContract_ = address(uint160(bytes20(_terms[:20])));

The proposed structure address(bytes2e(...)) is used in AllowedTargetsEnforcer :

DeleGator/src/enforcers/AllowedTargetsEnforcer.sol:L53

allowedTargets_[j] = address(bytes20(_terms[i:i + 20]));

H3. _terms.length should be exactly 52, not >=.

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L69-L73

require(_terms.length >= 52, "ERC20AllowanceEnforcer:invalid-terms-length");
allowedContract_ = address(uint160(bytes20(_terms[:20])));

allowedMethod_ = IERC20.transfer.selector;
maxTokens_ = uint256(bytes32(_terms[20:]));

H4. Unnecessary return:

There is probably no good reason why getTermsinfo returns the constant (1erc2e.transfer.selector) that’s not part of the terms . The
constant could be used directly in beforeHook .

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L64-L74

function getTermsInfo(bytes calldata _terms)

public

pure

returns (address allowedContract_, bytes4 allowedMethod_, uint256 maxTokens_)
{

require(_terms.length >= 52, "ERC20AllowanceEnforcer:invalid-terms-length");

allowedContract_ = address(uint160(bytes20(_terms[:20])));

allowedMethod_ = IERC20.transfer.selector;

maxTokens_ = uint256(bytes32(_terms[20:]));
}

H5. Possible Panic Exception:

In beforeHook , if the length of action.data is less than 68, a Panic exception will be thrown in line 46 or 49, in the expression

_action.data[@:4] OI _action.data[36:68] .

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L46

bytes4 targetSig_ = bytes4(_action.data[0:4]);

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L49

uint256 sending_ = uint256(bytes32(_action.data[36:68]));

This doesn’t cause any inherent risk, but according to the Solidity documentation: “Properly functioning code should never
create a Panic”. Hence, the function should first make sure that _action.data.length is exactly 68 and revert otherwise.

ERC20BalanceGteEnforcer

I1. Missing comment line:

https://docs.soliditylang.org/en/latest/control-structures.html#:~:text=Properly%20functioning%20code%20should%20never%20create%20a%20Panic%2C%20not%20even%20on%20invalid%20external%20input.

[ILTLILIP PP I I 7777171 State [////1117111111111171111111111

DeleGator/src/enforcers/ERC20BalanceGteEnforcer.sol:L14-L19

contract ERC20BalanceGteEnforcer is CaveatEnforcer {
mapping(address delegationManager => mapping(address delegator => mapping(address token => uint256 balance))) public
balanceCache;
mapping(address delegationManager => mapping(bytes32 delegationHash => bool lock)) public islLocked;

////////////////////////////// Public Methods //////////////////////////////

2. Uncommon and inconsistent order of arguments in terms :

The amount comes first, then the token address.

DeleGator/src/enforcers/ERC20BalanceGteEnforcer.sol:L61

(uint256 amount_, address token_) = getTermsInfo(_terms);

It’s more natural the other way around, which is also the order in Erc2eallowanceEnforcer .

DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol:L42

(address allowedContract_, bytes4 allowedMethod_, uint256 limit_) = getTermsInfo(_terms);

IncrementalIdEnforcer

J1. The delegator should be indexed in the event RevokedId :

DeleGator/src/enforcers/IncrementalldEnforcer.sol:L19

event RevokedId(address indexed delegationManager, address delegator, uint256 id);

LimitedCallsEnforcer

K1. uint256(bytes32(_terms[:32])) can be simplifiedto uint256(bytes32(_terms)) :

Since the length of terms is exactly 32 bytes, the expression uint256(bytes32(_terms[:32])) can be simplified to

uint256 (bytes32(_terms))

DeleGator/src/enforcers/LimitedCallsEnforcer.sol:L52

limit_ = uint256(bytes32(_terms[:32]));

(Cf. IncrementalIdEnforcer and ValuelLteEnforcer)

NonceEnforcer

L1. The delegator should be indexed in event UsedNonce :

DeleGator/src/enforcers/NonceEnforcer.sol:L20

event UsedNonce(address indexed sender, address delegator, uint256 nonce);

L2. uint256(bytes32(_terms[:32])) can be simplified to uint256(bytes32(_terms)) :

Since the length of terms is exactly 32 bytes, the expression uint256(bytes32(_terms[:32])) can be simplified to

uint256(bytes32(_terms))

DeleGator/src/enforcers/NonceEnforcer.sol:L52

nonce_ = uint256(bytes32(_terms[:32]));

(Cf. IncrementalIdEnforcer and ValuelteEnforcer)

L3. OpenZeppelin BitMap could be used:

Assuming the nonces (per delegation manager and delegator) are generally sequential, this enforcer could be made more
efficient with an OpenZeppelin BitMap .

5.22 Miscellaneous Minor Points Affecting Several Contracts ¢

A. public functions that are not used internally should be external instead.

Exception: When a public function is overridden, it has to remain public , even if it’s not used internally.

https://docs.openzeppelin.com/contracts/5.x/api/utils#BitMaps

B. There is no consistent pattern to determine which functions in a contract are marked as virtual and
which are not.

We recommend making deliberate and consistent decisions regarding the use of virtual functions.

Appendix 1 - Files in Scope

This audit covered the following files:

File

DeleGator/src/DeleGatorCore.sol
DeleGator/src/DelegationManager.sol
DeleGator/src/HybridDeleGator.sol
DeleGator/src/MultiSigDeleGator.sol
DeleGator/src/enforcers/AllowedCalldataEnforcer.sol
DeleGator/src/enforcers/AllowedMethodsEnforcer.sol
DeleGator/src/enforcers/AllowedTargetsEnforcer.sol
DeleGator/src/enforcers/BlockNumberEnforcer.sol
DeleGator/src/enforcers/CaveatEnforcer.sol
DeleGator/src/enforcers/DeployedEnforcer.sol
DeleGator/src/enforcers/ERC20AllowanceEnforcer.sol
DeleGator/src/enforcers/ERC20BalanceGteEnforcer.sol
DeleGator/src/enforcers/ERC20PaidEnforcer.sol
DeleGator/src/enforcers/IncrementalldEnforcer.sol
DeleGator/src/enforcers/LimitedCallsEnforcer.sol
DeleGator/src/enforcers/NonceEnforcer.sol
DeleGator/src/enforcers/TimestampEnforcer.sol
DeleGator/src/enforcers/ValuelLteEnforcer.sol
DeleGator/src/external/Daimo/P256.sol
DeleGator/src/external/Daimo/P256Verifier.sol
DeleGator/src/external/Daimo/WebAuthn.sol
DeleGator/src/external/Daimo/utils/Base64URL.sol
DeleGator/src/interfaces/ICaveatEnforcer.sol
DeleGator/src/interfaces/IDeleGatorCore.sol
DeleGator/src/interfaces/IDeleGatorCoreFull.sol
DeleGator/src/interfaces/IDelegationManager.sol
DeleGator/src/interfaces/IDelegationManagerMinimal.sol
DeleGator/src/interfaces/IERC173.so0l
DeleGator/src/libraries/ERC1271Lib.sol
DeleGator/src/libraries/ERC712Lib.sol
DeleGator/src/libraries/EncoderLib.sol
DeleGator/src/libraries/ExecutionLib.sol
DeleGator/src/libraries/P256VerifierLib.sol
DeleGator/src/utils/SimpleFactory.sol
DeleGator/src/utils/Typehashes.sol

DeleGator/src/utils/Types.sol

SHA-1 hash

355940e4b551cfcadf56166dd5ec5bbd83868c4f
aB823c7ffd265e8b0c7ce8f59a193d8aefa5c8297
8cl16bfacaae3be310162aa0475fc4a@fb60Obf75f
f2cd635d32cc4615ce215cebbf7¢c01d00bO59b2 f
7¢330dddb9d297e0865fea23fa2bc476196054737
0419b86b7df33c3a569a1166cada93c909f16ch3
435d7c522aff0165bde509898a8ca94b48bcalc9
8f2e9373b01f990fd8b9576fd6256c8c2b15fc18
044e85e3124e268543417ebbb3b7ec145ec56d36
5aabB86ea9648e0a9f58bd59ec57521378e813267
c5a1a@ba5b802048723a718208572c18f737778b
86df51232a948975246192698cf4b71247ea85d6
6976196731a3b533ce5€a931982b7fe181763e1b
b6boffc090cd5bdd661e6bd6a7fbalfb8826653d
2dcab4c6d30cd6a67d3c27df92563ad5833f4b2b
6b66b1880600c1f93f941a63767722d8ec79510a
aa%90a79972eeb5951f35fbc4183a4171ba3bbe39
3bfccd9ea7d10422cc2daal6bbB6ec31861a6d1a
38e862045cedcbed4acc3ccB2dc4Beeec79a07d4e
387c6d2ccd7e8d1955305222000985aaeb873eba
5ff5826400f08809a61b78f324cd5b9243634228
7625a76d3b4€9a9793df7585a0937¢49815d733f
bd79b3bc8df68fbdc78279¢7b72937832904d562
a6bd7fff8b1b763711993c9220476faa728c0161
83b7e726a487ebfbabc56c2516e4b92ba8d69286
b66331b43126b4db9ff16ab8dda75€02a66008f7
aBebf2aaeleccda577el1aab4476b7841d3a1c494
9cb693dBe5¢c26c7510b2c2fdOb8d38cbbc71653¢
c649d9fe3eddabf3f44aceBc3994a14592cd741e
800cf10a318c69b47ac55786Tdc0115925377428
60b063d719604e026bd9e805ab44cas4d783808a7
8dedfaB86200e1a81be924d98d3192936dc731158
d8978372a4a843d3ec95eda340595f7fa7770cch
4f27ba2529e66156725989f183da1940b9bb6d1a
ac6cbed8422220f1b2695bf0598c1c55a7b7e83

€324399f6b44ff78f77f398767a338chf092ca78

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as

investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY c consensys

https://consensys.io/

