@ Diligence

1 Executive Summary

2 Scope

2.1 Objectives

3 Security Specification
3.1 Actors

3.2 Trust Model

4 Findings

41 Public Visibility on

checkMerkleRootAndVerifySignat
ures

Allows for DOS Attacks and User
Fund Loss v Fixed

4.2 BatcherPaymentService -
onlyBatcher Restriction,
batchMerkleRoot Verification,

pausable ,and feePerProof Can

Be Bypassed Completely by
Calling

AlignedLayerServiceManager

Directly

Partially Addressed

4.3 Frontrunning DoS on
createNewTask Allows Anyone to
Block Legitimate
batchMerkleRoot Submissions

(liLE1Y | v Fixed

4.4 tx.gasprice Allowsa

Malicious User to Steal All Funds
From the Batcher Balance

v Fixed

4.5 Batcher Balance May Be
Insufficient v Fixed

4.6 Use EIP-712-style Signed
Hashing to Prevent Cross-Chain
Signature Replaying

v Fixed

4.7 BatcherPaymentService -

Non-Atomic Contract Deployment
and Initialization Forge Script Can

Be Front Run 'Medium | ¢ Fixed

4.8 No Admin Withdraw Functions
on Contracts Medium | v Fixed

4.9 After Unlocking Once, User
Balances Remain Unlocked

Forever Medium | ¢ Fixed

410 Direct Usage of ecrecover()

Medium v Fixed

411 [Not-in-Scope] Avoid
Changing Eigenlayer-Middleware
Contracts Directly 'Medium

Acknowledged

412 Unnecessary Low-Level Call
Medium = v Fixed

413 Critical State-Altering
Operations Lack Event Emissions,
Reducing Transparency and

Auditability. [[if3 | ¢ Fixed

414 batchDataPointer

Unchecked (T3

Acknowledged

415
AlignedLayerServiceManager.ini
tialize

Should Call

ServiceManager.__ServiceManage
rBase_init

m v Fixed

4.6 Solidity Coding Style
Guideline Violations [Ji)

v Fixed

417 Storage Layout Contract
Should Be Declared abstract

[Minor VA SCE|

4.18 Unused Imports [[T19
v Fixed

4.9 Provide an Interface for
AlignedLayerServiceManager

v Fixed
4.20 Where Possible, a Specific

Contract Type Should Be Used
Rather Than address | ¥ Fixed

Appendix 1 - Files in Scope

FUZZING SCRIBBLE ABOUT

Aligned Layer

Date August 2024

1 Executive Summary

Martin Ortner, George

Audi
uditors Kobakhidze

This report presents the results of our engagement with Aligned to review Aligned Layer AVS Smart Contracts.
The review was conducted over two weeks, from August 12 to August 16. A total of 2x5 person-days were spent.

Aligned Layer AVS is a system that validates Zero-Knowledge and Validity proofs and publishes the results on Ethereum. Its core is implemented as an EigenLayer
Actively Validated Service (AVS) that implements EigenlLayer’s serviceManager interface and verifies operator Stakes with EigenLayer’s BLssignaturechecker . Operator
registration is whitelisted by implementing non-standard standard changes (!) to EigenLayer’s Registrycoordinator . These changes are not in scope for this review.
Aligned Layer controls access to operator registration and is responsible for ensuring minimum staked quorum and operator distribution is fair and safe for the
purpose of this protocol. For this purpose, Aligned AVS uses hardcoded quorum ID e for consensus verification and stake quorum checks with a threshold of
67/100 . Quorum setup is not in scope for this review. Users are advised to review Aligned Layer’s on-chain AVS configuration, especially the operatorsetparans ,
minimumStake , and strategyParams for quorum id e, as this defines the security of the protocol.

An additional contract is introduced to batch user signatures together under a single root on their behalf by a centralized batcher service. Similarly, functionality
to prove inclusion is also present.

The system uses EigenLayer’s Merkle tree library to verify the inclusion of leaves in a root. The AVS is based on a modified version of serviceManagerBase and
BLSSignatureChecker (checkSignatures). The security of the system depends on the correctness of these foreign functions, libraries, and contracts.

Non-standard modifications to EigenLayer Middleware are used. They are tracked with PR-295. As noted in the Findings we strongly recommend subclassing
middleware functionality in the Aligned namespace instead of forking upstream to patch-in custom, standard deviating middlelayer changes. Namely, API
changes, changes to Function Signatures, and Error Conditions can be problematic and may lead to the privately forked version diverging from upstream up to a
point where it becomes unmaintainable to backport security patches.

2 Scope
This review focused on v0.4.0 (325aef8c3f54ec596b4733956a8ac487d5535fc3). The list of files in scope can be found in the Appendix.

2.1 Objectives
Together with the Aligned team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the Smart Contract Weakness
Classification Registry.

3. Integration with EigenLayer AVS.

3 Security Specification

The diagram below provides a quick overview of the contracts, their main functionality, and interactions.

(BatcherWallet w

T &)

Proxy! !

. g f :' roof (" AlignedLayerServiceManager)
[BatcherPaymentService] (3} ee’vpoo L B
— \
\ \

disableinitializers
L ‘ BLSSignatureCheck »| _constr__
__constr__ disableinitializers | initalizer »| initialize
initalizer »| initialize emmmmmmmeemmmmmeemseemeeoooo 3§ createNewTask no auth!

& __receive _

% whenNotPaused onlyBatcher »| createNewTask smesEIIlo oo

whenNotPaused »| unlock
whenNotPaused »| lock & __receive__
transfer eth -> msg.sender
whenNotPaused » withdraw > \:\ checkPublicInput

onlyOwner > pause

onlyOwner »| unpause

checkMerkleRootAndVerifySignatures

J
ServiceManagerBase 1
|

A user_balances

__constr__

onlyOwner »| updateAVSMetadataURT

O R »| registerOperatorToAVsS

onlyRegistryCoordinator »| deregisterOperatorFromAVS
4 getRestakeableStrategies

4 getOperatorRestakedStrategies

onlyOwner renounceOwnership 4 avsDirectory

-

onlyOwner transferOwnership [—1
‘OwnableUpgradeable)

J

onlyOwner »| renounceOwnership

onlyOwner »| transferOwnership

onlyProxy ® upgradeToAndCall checks msg.sender == onlyOwner

__constr__

onlyCoordinatorOwner »| setStaleStakesForbidden

4 checkSignatures

C trySignatureAndApkverification

Overview: Aligned Contracts

This section describes, from a security perspective, the behavior of the system under audit. It is not a substitute for documentation.

3.1 Actors
The relevant actors are listed below with their respective abilities:

¢ The Aligned team: The Aligned team has privileged access to upgrade upgradeable contracts in the system and also has owner access to the contracts by
default. They can pause the batcher contract and are trusted not to be compromised or malicious. They must ensure that owner parameters are not changed

https://docs.eigenlayer.xyz/eigenlayer/avs-guides/avs-developer-guide
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files
https://github.com/yetanotherco/aligned_layer/commit/325aef8c3f54ec596b4733956a8ac487d5535fc3
https://github.com/yetanotherco/aligned_layer/commit/325aef8c3f54ec596b4733956a8ac487d5535fc3
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://docs.eigenlayer.xyz/eigenlayer/avs-guides/avs-developer-guide
https://consensys.net/diligence/audits/private/l34nwmmk51viue/img/tm_aligned.svg
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

in a way that negatively impacts users and must not abuse the upgradeability of the batcher contract. It should be noted that the owners might upgrade the
contracts at will, changing behavior without prior notifications for users.

e The batcher: The centralized batcher is responsible for batching user signatures and their signed leaves together to create tasks in the service manager. They
are the only entity that can batch user signatures together to create a task, although users can also create a task independently. The batcher is trusted not to
censor user signatures and to maintain a healthy balance on the contracts to ensure continuous execution and the ability to refund user transactions. Users
have the option to submit roots directly to avoid censoring by the batcher, however, this functionality may allow for a variety of attacks (see Findings).

e The aggregator: The aggregator responds to tasks with aggregated BLS signatures of the voted nodes in the Aligned layer. They are trusted to correctly
collect all signatures and submit them timely to the service manager.

e The users: Users provide their signatures and signed leaves to the batcher to be included in the proofs. They are required to deposit funds to facilitate batcher
gas expenditure, and their withdrawals are time-locked to prevent frontrunning the batch by withdrawing their funds. There is no particular trust provided to
users beyond these requirements.

3.2 Trust Model
In any system, it's important to identify what trust is expected/required between various actors. For this audit, we established the following trust model:

¢ The Aligned team: Trusted to manage upgradeable contracts responsibly and not to misuse their privileged access.
¢ The batcher: Trusted to batch user signatures fairly, maintain contract balances, and ensure continuous operation.
e The aggregator: Trusted to collect and submit aggregated BLS signatures accurately and timely.

e The users: Required to deposit funds and adhere to time-locked withdrawals, with no additional trust assumptions.

4 Findings
Each issue has an assigned severity:

e [UIM issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers should use their own judgment as
to whether to address such issues.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear reason not to.

o [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be exploited. All major issues should
be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

41 Public Visibility on checkMerkleRootAndVerifySignatures Allows for DOS Attacks and User Fund Loss J Fixed

Resolution

Addressed with yetanotherco/aligned_layer#801 by changing the function name from checkMerkleRootAndverifySignatures tO _checkMerkleRootAndVerifySignatures and
VISIbI|Ity from public tO private . The function verifySignatureAndDecreaseBalance also had its name Changed 1O _verifySignatureAndDecreaseBalance tO follow style. The
client provided the following statement:

Visibility was changed to private, and private functions were refactored to start with _. Contracts were also redeployed in anvil.

Description

When a new task is created through BatcherpPaymentService , the createnewTask() function is called with appropriate signature arguments to validate user submissions,
subtract funds from their accounts, and ultimately create the task via a call to AlignedLayerServiceManager.createNewTask() .

However, the signature validation and balance adjustment happens in an intermediate function called checkMerkleRrootAndverifysignatures() Which takes almost the
same parameters:

contracts/src/core/BatcherPaymentService.sol:L173-L178

function checkMerkleRootAndVerifySignatures(
bytes32[] calldata leaves,
bytes32 batchMerkleRoot,
SignatureData[] calldata signatures,
uint256 feePerProof

) public {

The issue is that this function is public with no modifiers, unlike createnewtask() which is both onlyBatcher and whenNotPaused . There are no further checks for
msg.sender . As a result, any user can call checkMerklerootAndverifysignatures() directly with correct signature parameters by frontrunning the createNewtask() transaction,
and the contract would validate the signatures and subtract user balances.

Two additional outcomes here are that:

e The user nonces are now updated, so those same signatures arguments that were taken can no longer be used, so the proper transaction that got frontran will
be reverted in the same part of the code where the nonce got updated:

contracts/src/core/BatcherPaymentService.sol:L248-L249

require(user_data.nonce == signatureData.nonce, "Invalid Nonce");
user_data.nonce++;

e The feeperproof argument is given directly in checkMerkleRootAndverifySignatures() , SO @ malicious user can simply pick a large number to subtract all funds from
user balances. Just as a note - in createNewTask() the feePerproof argument is constructed from arguments by an authenticated called which is the batcher, so,
while the resulting feeperproof could still be unfairly large, this is at least less possible from an authenticated called which has access to other admin-like
functionality on the contract.

The impact of this function’s visibility is that users may lose all their funds, and proper transactions can be reverted.

Recommendation

Adjust visibility and other argument checks on the checkMerkleRootAndverifySignatures() function.

4.2 BatcherPaymentService - onlyBatcher Restriction, batchMerkleRoot Verification, pausable, and

feePerProof Can Be Bypassed Completely by Calling AlignedLayerServiceManager Directly Partially Addressed

Resolution

https://github.com/yetanotherco/aligned_layer/pull/801

Having the ability to bypass the batcher is an intended design, while the checks (such as leaf and signature verification) are addressed by off-chain logic. So,
while on-chain contract checks aren’t implemented, the Aligned layer nodes perform the necessary review of data, such as verification of submitted
batchMerkleRoot With associated batchpatapointer data. The client provided the following statement:

The batcher is not part of the core protocol, is just an addition to let people batch proofs with other people. No check that is done in that contract
should be needed for the system to work. The checks are on the operator, it recalculates the root from the leaves of the data it downloads and
checks it matches with the one on the blockchain, else the batch proof is rejected. Each operator:

e Downloads all the data with the proofs

e Recalculates the merkle tree from the data (the proofs), and checks that it's root matches the root in Ethereum. Else the batch of proofs is not
correct, because the leaves are not associated with the root.

o Verifies all the proofs

e Send the signed root if the batch is valid to the Aggregator

Description

Several vulnerabilities are present due to insufficient access controls and a lack of proper authentication checks between Batcherpaymentservice and
AlignedLayerServiceManager . These issues allow unauthorized actions and bypass essential validations. Also, see issue 4.3 .

1. Unauthorized Access to createNewTask()

The function AalignedLayerServiceManager.createNewTask() iS Not protected by authentication, allowing any user to call it directly without going through the
BatcherPaymentService interface. This enables bypassing the onlyBatcher restriction applied in BatcherPaymentService.createNewTask() .

contracts/src/core/BatcherPaymentService.sol:L68-L76

// PUBLIC FUNCTIONS
function createNewTask(
bytes32 batchMerkleRoot,
string calldata batchDataPointer,
bytes32[] calldata leaves, // padded to the next power of 2
SignatureData[] calldata signatures, // actual length (proof sumbitters == proofs submitted)
uint256 gasForAggregator,
uint256 gasPerProof
) external onlyBatcher whenNotPaused {

contracts/src/core/AlignedLayerServiceManager.sol:L56-L60

function createNewTask(

bytes32 batchMerkleRoot,

string calldata batchDataPointer
) external payable {

require(

2. Bypassing Merkle Root and Signatures / Balance checks

Direct interaction with AlignedLayerServiceManager.createNewTask() allows users to bypass Merkle root and signature checks enforced by
BatcherPaymentService.createNewTask() . This omission provides no incentive to use BatcherPaymentService , undermining the intended validation mechanisms.

contracts/src/core/BatcherPaymentService.sol:L98-L114

checkMerkleRootAndVerifySignatures(
leaves,
batchMerkleRoot,
signatures,
feePerProof

);

// call alignedLayerServiceManager
// with value to fund the task's response
(bool success,) = AlignedLayerServiceManager.call{
value: feeForAggregator
H(
abi.encodeWithSignature(
"createNewTask(bytes32,string)",
batchMerkleRoot,
batchDataPointer

3. Bypassing Pausable Functionality

BatcherPaymentService has pausable functionality restricted to onlyBatcher , but AlignedLayerServiceManager does not enforce such restrictions and is callable by anyone.
This exposes the system to risks during maintenance or emergency situations.

contracts/src/core/BatcherPaymentService.sol:L69-L76

function createNewTask(
bytes32 batchMerkleRoot,
string calldata batchDataPointer,
bytes32[] calldata leaves, // padded to the next power of 2
SignatureData[] calldata signatures, // actual length (proof sumbitters == proofs submitted)
uint256 gasForAggregator,
uint256 gasPerProof
) external onlyBatcher whenNotPaused {

AlignedLayerServiceManager has no pausable restrictions, callable by anyone

contracts/src/core/AlignedLayerServiceManager.sol:L56-L68

function createNewTask(
bytes32 batchMerkleRoot,
string calldata batchDataPointer
) external payable {
require(
batchesState[batchMerkleRoot].taskCreatedBlock == 0,
"Batch was already submitted"

)

if (msg.value > 0) {
batchersBalances[msg.sender] += msg.value;

4. Fee Evasion

Users may avoid paying the feeperproof by interacting directly with AlignedLayerServiceManager .createNewTask() rather than using BatcherPaymentService , thus circumventing
fees intended for the BatcherwWallet in BatcherPaymentService .

contracts/src/core/BatcherPaymentService.sol:L105-L121

(bool success,) = AlignedLayerServiceManager.call{
value: feeForAggregator

3

abi.encodeWithSignature(
"createNewTask(bytes32,string)",
batchMerkleRoot,
batchDataPointer

)
require(success, "createNewTask call failed");

payable(BatcherWallet).transfer(
(feePerProof * signaturesQty) - feeForAggregator

)

Recommendation

Implement access control and authentication checks in alignedLayerserviceManager to ensure that all critical functions are only callable through authorized channels,
such as BatcherPaymentservice . Specifically, consider the following actions:

e Restrict direct access tO createNewTask() iN AlignedLayerServiceManager and enforce access through BatcherPaymentService .
e Ensure that AlignedLayerserviceManager incorporates all necessary checks, including Merkle root and signature validations, to maintain system integrity.

e Review fee structures and enforce them consistently across both contracts to prevent fee evasion.

4.3 Frontrunning DoS on createNewTask Allows Anyone to Block Legitimate batchMerkleRoot Submissions ¢ Fixed

Resolution

Addressed with yetanotherco/aligned_layer#804 by introducing a new ID for tasks called batchidentifiertash that is based on both the task creator msg.sender
and the batchMerkleRoot Via keccak256(abi.encodePacked(batchMerkleRoot, senderAddress)) . This addresses the DOS problem as a frontrunner would create a new and
different batchidentifierdash, and the original transaction’s sender’s task can still be responded to. This does allow previously submitted and responded to tasks
to be re-created. Subsequently, their associated Merkle roots may be re-verified, emitting previously seen events, namely Batchverified(batchMerkleRoot) .
However, this isnt a problem since it is just a matter of re-verification of roots & signatures. The client provided the following statement:

AlignedLayerServiceManager’s map to store batches state (previously merkle_root -> batchState), now uses msg.sender as part of its key (now
hash(merkle_root, msg.sender) -> batchState).

Description

The AlignedLayerServiceManager.createNewTask() function is vulnerable to front-running attacks due to a lack of authentication. Together with insufficient balance
management this can easily lead to Denial of Service (DoS) attacks. Malicious actors can preempt legitimate batcher submissions by setting themselves as the
batcher for a merkle root with minimal funds, potentially causing DoS conditions or enabling extortion. The function only requires a non-zero value, allowing tasks
that can’t cover transaction costs reimbursed in respondToTask() . Additionally, the user-provided batchDataPointer in emitted events may impact off-chain
components if manipulated.

® BatcherPaymentService.createNewTask() calling AlignedLayerServiceManager.createNewTask() (presumably, this is the main call ﬂOW)

contracts/src/core/BatcherPaymentService.sol:L109-L115

}H(
abi.encodeWithSignature(
"createNewTask(bytes32,string)",
batchMerkleRoot,
batchDataPointer

® AlignedLayerServiceManager.createNewTask() IS NOt authenticated, and batch states are global and merkle root indexed. The function does not enforce a meaningful
minimum balance for the batcher; 1 wei is enough to set yourself as the batcher for a merkle root while this task can never be fulfilled because it is not
enough to cover transaction costs reimbursed when responding.

contracts/src/core/AlignedLayerServiceManager.sol:L56-L80

function createNewTask(
bytes32 batchMerkleRoot,
string calldata batchDataPointer
) external payable {
require(
batchesState[batchMerkleRoot].taskCreatedBlock == 0,
"Batch was already submitted"

Ik
if (msg.value > 0) {

batchersBalances[msg.sender] += msg.value;
require(batchersBalances[msg.sender] > @, "Batcher balance is empty");
BatchState memory batchState;
batchState.taskCreatedBlock = uint32(block.number);
batchState.responded = false;
batchState.batcherAddress = msg.sender;

batchesState[batchMerkleRoot] = batchState;

emit NewBatch(batchMerkleRoot, uint32(block.number), batchDataPointer);

® AlignedLayerServiceManager.respondToTask () reimbursing transaction costs

https://github.com/yetanotherco/aligned_layer/pull/804

contracts/src/core/AlignedLayerServiceManager.sol:L135-L148

uint256 txCost = (initialGasLeft - finalGasLeft + 70000) * tx.gasprice;

require(
batchersBalances[batchesState[batchMerkleRoot].batcherAddress] >=
txCost,
"Batcher has not sufficient funds for paying this transaction"

)

batchersBalances|
batchesState[batchMerkleRoot].batcherAddress

] -= txCost;

payable(msg.sender).transfer(txCost);

The batchpatapointer is user provided data that is emitted with the event. By front-running legitimate task creations a malicious actor could submit the same root
with a different batchpatarointer Which might have consequences for off-chain components picking up that data. Additionally, the solidity type string might not be
the most efficient data type for this purpose (string is assumed utf8 encoded, bytes would be more efficient, fixed length bytes would be most gas efficient)

Recommendation

Implement a meaningful minimum balance requirement for createNewTask(). Consider removing transaction cost reimbursement or implement a more robust
system. Authenticate the createNewTask() function or index tasks by a unique batchld instead of merkle root. Implement measures to prevent front-running of
batcher assignments. Validate and sanitize the batchDataPointer input. Consider using bytes instead of string for batchDataPointer for improved efficiency.

4.4 tx.gasprice Allows a Malicious User to Steal All Funds From the Batcher Balance o (Ve

Resolution

Addressed in:

e PR 869 by allowing users to specify a maximum fee to be taken for processing their signatures

¢ PR 910 by limiting the fee that the aggregator can take for processing the batch

Additionally, PR 883 was introduced that further protects the system by placing an authentication check on respondtotaskv2() so that only the aggregator may
call it to safeguard against frontrunners that would otherwise be able to steal the fee meant for the aggregator.

Description

To calculate the refund for a user, the contracts use tx.gasprice . However, this is an effective gas price that the user pays, not a system-set price. In particular, it
consists of two gas prices:

e base fee, as set by the system

e priority fee, which is tipped to the miner and defined by the user.
This gas price is used to calculate the transaction cost to refund the user:

contracts/src/core/AlignedLayerServiceManager.sol:L137

uint256 txCost = (initialGasLeft - finalGasLeft + 70000) * tx.gasprice;

In the event that a user==miner, they can:

1. set an absurdly high transaction price
2. call respondToTask()
3. perform the transaction

4. get the inflated transaction refund which would siphon all the funds out from the batchersBalances[batchesState[batchMerkleRoot].batcherAddress]
Recommendation

Consider redesigning the refund mechanism to not be susceptible to user-given parameters, such as a flat refund or a base fee-focused refund.

4.5 Batcher Balance May Be Insufficient ¢zm [vres

Resolution

Addressed in yetanotherco/aligned_layer#876 by introducing a new function depositToBatcher(address account) that allows to increase the balance of a given
account DY msg.value sent along with the transaction. This allows to top off the batcher’s balance so the task can be responded to. Additionally, PR
yetanotherco/aligned_layer#804 also helps alleviate the problem of insufficient batcher balance, as now previously submitted Merkle roots can be re-
submitted with another sender with sufficient balance as the associated batcher to create the task.

Description

The AlignedLayerServiceManager contract maintains a balance tracker, batchersBalances[] , Wwhich is updated either through the receive() function from a user or during
createTask() . The latter requires a non-zero value to be sent with the message:

contracts/src/core/AlignedLayerServiceManager.sol:L65-L69

if (msg.value > 0) {
batchersBalances[msg.sender] += msg.value;

}

require(batchersBalances[msg.sender] > 0, "Batcher balance is empty");

Once a task is created for a batcher address, it remains associated with that address and cannot be removed. When responding to the task, the system verifies
that the batcher has sufficient funds to cover the transaction:

contracts/src/core/AlignedLayerServiceManager.sol:L104-L107

https://github.com/yetanotherco/aligned_layer/pull/869
https://github.com/yetanotherco/aligned_layer/pull/910
https://github.com/yetanotherco/aligned_layer/pull/883
https://github.com/yetanotherco/aligned_layer/pull/876
https://github.com/yetanotherco/aligned_layer/pull/804

require(
batchersBalances[batchesState[batchMerkleRoot].batcherAddress] > 0,
"Batcher has no balance”

)

contracts/src/core/AlignedLayerServiceManager.sol:L139-L143

require(
batchersBalances|[batchesState[batchMerkleRoot].batcherAddress] >=
txCost,
"Batcher has not sufficient funds for paying this transaction”

)

The initial check ensures a non-zero balance, while the second check requires a specific amount and will revert if the balance is insufficient. This can lead to a
situation where a batcher’s task becomes unrespondable if their balance is depleted, whether due to malicious intent or an error. Furthermore, the balance tracker
is only updated through receive() Or createtask() , and there is no mechanism to top off a batcher’s balance without their direct involvement.

Recommendation
Consider

¢ asking for specific funds during createTask so the rest of the flow goes through
e allowing for admins to remove tasks

e scratching the refund mechanism

4.6 Use EIP-712-style Signed Hashing to Prevent Cross-Chain Signature Replaying (zm (Ve

Resolution

Addressed in stages:

e PR 822 by adding the chainld to the hashed data.
e PR 916, PR 1041, and PR 1054 by modifying the signed struct to be fully EIP-712 compliant.

Description

The current implementation uses a raw ecrecover function to verify whether a user signed a data structure by hashing the data directly. This approach is
susceptible to cross-network replay attacks. To enhance security and prevent such issues, the implementation should use a domain separator as specified in EIP-
712.

contracts/src/core/BatcherPaymentService.sol:L230-L244

function verifySignatureAndDecreaseBalance(
bytes32 hash,
SignatureData calldata signatureData,
uint256 feePerProof
) private {
bytes32 noncedHash = keccak256(
abi.encodePacked(hash, signatureData.nonce)

)

address signer = ecrecover(
noncedHash,
signatureData.v,
signatureData.r,
signatureData.s

Recommendation

Utilize the OpenZeppelin EIP712 and ECDSA libraries to implement domain-bound signatures. These libraries provide robust and battle-tested solutions for
signature validation, mitigating common issues associated with ECDSA and preventing cross-network replay attacks.

4.7 BatcherPaymentService - Non-Atomic Contract Deployment and Initialization Forge Script Can Be Front Run iedium

v Fixed

Resolution

Fixed with yetanotherco/aligned_layer#828 by initializing the Proxy directly with the internal upgradetoandcall during deployment.

Description

The Batcherpaymentservice deployment script using Forge performs a two-step deployment and initialization process. Between the startBroadcast and stopBroadcast
directives, the script executes three transactions:

1. Deploys a new BatcherService contract.
2. Deploys a new Eerci1967pProxy Without initialization calldata.

3. Initializes the Batcherpaymentservice contract through the proxy.

contracts/script/deploy/BatcherPaymentServiceDeployer.s.sol:L31-L44

vm.startBroadcast();

BatcherPaymentService batcherPaymentService = new BatcherPaymentService();
ERC1967Proxy proxy = new ERC1967Proxy (
address(batcherPaymentService),

iE
BatcherPaymentService(payable(address(proxy))).initialize(
alignedLayerServiceManager,
batcherPaymentServiceOwner,
batcherWallet

)

vm.stopBroadcast();

https://github.com/yetanotherco/aligned_layer/pull/822
https://github.com/yetanotherco/aligned_layer/pull/916
https://github.com/yetanotherco/aligned_layer/pull/1041
https://github.com/yetanotherco/aligned_layer/pull/1054
https://github.com/ethereum/EIPs/blob/master/EIPS/eip-712.md
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/EIP712.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://github.com/yetanotherco/aligned_layer/pull/828

Since these transactions are broadcast individually, there is a risk that a malicious actor could front-run the third transaction to claim control of the newly
deployed contract. This issue could force the deployer to re-deploy the contracts.

For further details, refer to the Forge script documentation.

Recommendation

To mitigate this risk, include the initialization calldata when deploying the erci967prroxy . This approach ensures that the contract is initialized in the same
transaction as its deployment, preventing potential front-running attacks.

4.8 No Admin Withdraw Functions on Contracts wedium [V Fxed

Resolution

While admin withdraw functionality for stuck ETH in the contract would help to retrieve funds simply, it would also give more control over the contracts to the
team. To limit admin functionality, admin withdrawals won’t be implemented, but the team acknowledges that in extreme situations a workaround may be
needed, which is achievable via a proxy upgrade on the Batcherpaymentservice contract. On the other hand, while the alignedLayerServiceManager contract also
interacts with ETH deposits for individual batchers, there is no withdraw functionality for the users. In the event some batchers over-deposit and decide to exit
the system, a withdrawal may be required. This is addressed in yetanotherco/aligned_layer#872 by introducing a withdraw(uint256 amount) function that retrieves

amount Of ETH from msg.sender ‘S batchersBalance .

Description

Both contracts are intended to receive, store, and use ETH on behalf of users. The calculations for ETH subtractions and usage are for gas purposes, which are
difficult to calculate accurately.

As a result, it is probable that some amount of ETH will be stuck in the contracts with nobody being able to use or claim them.
Recommendation

Consider adding an admin authentication-protected withdraw() function that just sends a privileged address the funds.

4.9 After Unlocking Once, User Balances Remain Unlocked Forever wedium [VFie

Resolution

Addressed with yetanotherco/aligned_layer#821 by resetting the unblockBlock to zero on withdraw() . The client provided the following statement:

This PR addresses an issue where user balances remained unlocked indefinitely after the first time withdraw was called. This meant that once a
user’s funds were unlocked when withdrawing, they remained in an unlocked state permanently, even after the initial unlock period had passed. To
solve this, after the funds are withdrawn, the unlockBlock value is reset to O to lock the user’s account again.

Description
The unlock() function is designed to set a timelock parameter for a user, allowing them to unlock their account at a specified future time:

contracts/src/core/BatcherPaymentService.sol:L124-L131

function unlock() external whenNotPaused {
require(
UserData[msg.sender].balance > 0,
"User has no funds to unlock"

)

UserData[msg.sender].unlockBlock = block.number + UNLOCK_BLOCK_COUNT;

However, when the unlock occurs through the withdraw() function, the timelock status is not reset. Consequently, the user remains in an “unlocked” state
indefinitely, which allows them to deposit and withdraw without restrictions:

contracts/src/core/BatcherPaymentService.sol:L138-L150

function withdraw(uint256 amount) external whenNotPaused {
UserInfo storage user_data = UserData[msg.sender];
require(user_data.balance >= amount, "Payer has insufficient balance");

require(
user_data.unlockBlock '= @ && user_data.unlockBlock <= block.number,
"Funds are locked"

)
user_data.balance -= amount;

payable(msg.sender).transfer(amount);
emit FundsWithdrawn(msg.sender, amount);

After a conversation with the team, it appears that the batcher service will only take signatures from those users that are actively in the locked state. In other
words, there is offchain logic that helps alleviate the impact of this issue. The only caveat is that the users would always need to lock themselves after unlocking
and withdrawing.

Recommendation

Consider changing the withdraw() function so it resets the user’s unlock status after the unlock period expires. This will prevent users from remaining in an
unrestricted state indefinitely.

4.10 Direct Usage of ecrecover () wedum [VFied

Resolution

Addressed with yetanotherco/aligned_layer#787 by using openzeppelin’s ecosa lib for signature verification.

Use open Zeppelin lib for signature verification instead of ecrecover

https://book.getfoundry.sh/tutorials/best-practices?highlight=VulnerableScript#scripts
https://github.com/yetanotherco/aligned_layer/pull/872
https://github.com/yetanotherco/aligned_layer/pull/821
https://github.com/yetanotherco/aligned_layer/pull/787

Description
The system currently uses the direct ecrecover() function to determine the signer of signaturepata :

contracts/src/core/BatcherPaymentService.sol:L239-L244

address signer = ecrecover(
noncedHash,
signatureData.v,
signatureData.r,
signatureData.s

This approach has the following issues:

e Error Handling: A failed signature verification returns e rather than reverting with an error, potentially leading to incorrect error handling downstream.

¢ Signature Manipulation: Direct use of ecrecover() is vulnerable to manipulation. For example, adjusting the signaturepata.r parameter can yield a random
address, allowing for incorrect or malicious signatures to be processed as valid.

Using a function from a well-established library, such as OpenZeppelin's, can address these concerns.

Recommendation

To improve security and error handling, use the OpenZeppelin ECDSA library for signature verification. This library provides a secure and reliable implementation
of ecrecover() that includes robust error handling and mitigates the risk of signature manipulation. Incorporating this library will ensure more accurate and secure
signature verification in the contract.

411 [Not-in-Scope] Avoid Changing Eigenlayer-Middleware Contracts Directly wedium acknowtedged

Resolution

The implementation of Aligned contracts requires changes in logic of functions such as:

® BLSSignatureChecker.checkSignatures
® RegistryCoordinator.registerOperator

® RegistryCoordinator.initialize

Contract constructors Which are non-virtual functions in the Layr-Labs created contracts. As a result, it won’t be possible to override them, and a fork is
the simplest option. However, the Aligned team should take note that this approach should be done cautiously, and significant care should be applied
during upgrades if and when Layr-Labs contracts are updated.

Description

The Aligned team has indicated that they rely on eigenlayer-middleware patches to implement whitelisting features in the Registry Coordinator. The team provided
a draft patch for review. However, we advise against directly patching the audited Layr-Labs repository for the following reasons:

e src/BLSSignatureChecker.sol and src/interfaces/IBLSSignatureChecker.sol change the function signature of checksignatures to exclude quorumNumbers as they are
hardcoded to aLzenED_quoruM_NuMBER . This is a very protocol-specific changeset that changes the Layer-Labs APl which should be avoided by all costs as this will
be very hard to maintain when trying to update to newer eigenlayer-middleware releases (i.e. security updates, etc.). Hardcoding the quorums to
aL1eNED_quoruM_NUMBER (hex Ox0O0) diverges from how eigenlayer-middleware is meant to be used.

e src/Whitelist.sol adds a whitelist contract. The contract lacks clear visibility specifiers for the internal whitelist mapping (defaults to internal).
Adding/Removing addresses from/to whitelist does not yield any events although it is an important administrative action (monitoring/trail of events). The
contract should be abstract as it is meant to be inherited by other contracts.

e src/RegistryCoordinator.sol patches the stock Rregistrycoordinator inside the eigenlayer repository (!) to include Whitelist functionality. Instead of patching the
source contract in the foreign-maintained repository, it would be much better to sub-class the RegistryCoordinator by building an alignedregistrycoordinator that
inherits from the original Rregistrycoordinator overriding functionality with the patched whitelisting features. Furthermore, the changeset changes/shortens error
messages emitted by the stock Rregistrycoordinator Which basically makes the contract diverge from the original APl and specification. This may be problematic
as the contract does not match the eigenlayer APl documentation anymore.

e In general, reformatting the codebase may make it increasingly hard to diff future versions of the aligned version from the upstream.
Recommendation

Avoid making direct modifications to third-party codebases like the Layr-Labs repository. Instead, import the required components, subclass where necessary, and
override functionality within the Aligned codebase. This approach preserves compatibility with the original API, reduces maintenance complexity, and ensures
alignment with eigenlayer documentation and future updates.

412 Unnecessary Low-Level Call wediim [¥Fiea

Resolution

Fixed with yetanotherco/aligned_layer#820 by replacing the low-level call with a contract-typed interface call.

This PR refactors the AlignedLayerServiceManager contract to improve maintainability, code clarity, and adherence to best practices. The changes
involve defining an interface for AlignedLayerServiceManager and replacing the low-level .call usage with interface calls in BatcherPaymentService.

Description

It is recommended to avoid using the low-level, untyped, and unchecked address.cal1() method when interacting with a contract. Instead, consider invoking the
external contract through its defined contract type. This approach ensures type safety, correct function signature matching, and proper revert propagation.

AlignedLayerServiceManager.createNewTask{value:feeForAggregator}(batchMerkleRoot, batchDataPointer);

contracts/src/core/BatcherPaymentService.sol:L105-L117

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/utils/cryptography/ECDSA.sol
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files#diff-bea9ae8c6cafebda0b71c4e92d5420b35cada7b08fd33c6e06e307350dd362da
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files#diff-682d35381822f196fb40851c97cd4ee664b7a45cd0ae656f06bd14d8315db103
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files#diff-c3ccd4844f0ce2b00ac83b490f0bdf0dcb59e250eaaea6478ef8c008c0dbe067
https://github.com/Layr-Labs/eigenlayer-middleware/pull/295/files#diff-a76428044d34fa4218c81701c5ad3602e1d0484b6eefbe7fbfb8350fa5eb6559
https://github.com/yetanotherco/aligned_layer/pull/820

(bool success,) = AlignedLayerServiceManager.call{
value: feeForAggregator

3

abi.encodeWithSignature(
"createNewTask(bytes32,string)",
batchMerkleRoot,
batchDataPointer

)

require(success, "createNewTask call failed");

413 Critical State-Altering Operations Lack Event Emissions, Reducing Transparency and Auditability. grm (vese

Resolution

Addressed with yetanotherco/aligned_layer#840 by introducing the relevant events. Specifically:

® BatcherBalanceUpdated
® TaskCreated
® BalancelLocked

® BalanceUnlocked

Description

Critical state-altering operations in the contracts do not emit events, which diminishes transparency and makes it harder to audit changes effectively.

Examples
e The creation of a new task.
e The 1ocking and unlocking Of balances before withdrawal:

contracts/src/core/BatcherPaymentService.sol:L123-L136

function unlock() external whenNotPaused {
require(
UserData[msg.sender].balance > 0,
"User has no funds to unlock"

DK

UserData[msg.sender].unlockBlock = block.number + UNLOCK_BLOCK_COUNT;
}

function lock() external whenNotPaused {
require(UserData[msg.sender].balance > 0, "User has no funds to lock");
UserData[msg.sender] .unlockBlock = 0;

e The checkMerkleRootAndverifysignatures function, which is public and updates user balances in verifysignatureAndbecreaseBalance but does not emit any events.

Recommendation

Implement event emissions for all significant state changes. This will improve off-chain monitoring, enhance debugging capabilities, and increase transparency in
contract interactions.

414 batchDataPointer Unchecked gmm acknowledged

Resolution

Handled offchain by each operator. As explained by the client team:
Operators run the checks that the data is valid. If the data is invalid, batch gets discarded. Each operator:

e Downloads all the data with the proofs

e Recalculates the merkle tree from the data (the proofs), and checks that it's root matches the root in Ethereum. Else the batch of proofs is not
correct, because the leaves are not associated with the root.

o Verifies all the proofs

e Send the signed root if the batch is valid to the Aggregator

Description

In createNewTask() there is an argument batchbataPointer Which is passed along with the batchmerkleroot . After all the checks, the batchpatapointer is emitted as part of
the event, seemingly as the data that is associated with this root exactly.

However, this isn't checked or validated, so any valid batchMerkleroot may be provided to emit the event with any arbitrary, valid, or invalid batchbataPointer as the
user would want.

This could cause confusion in some backend event-listening services.

Recommendation

Validate batchpatapointer as needed.

415 AlignedlLayerServiceManager.initialize Should Call ServiceManager.__ServiceManagerBase_init omm

v Fixed

Resolution

https://github.com/yetanotherco/aligned_layer/pull/840

Addressed with yetanotherco/aligned_layer#842 by calling __serviceManagerBase_init() Which transfers ownership. The client provided the following statement:

This PR updates the AlignedLayerServiceManager contract to improve the consistency and security of the initialization process by leveraging the
existing mechanisms in the ServiceManagerBase contract.

Description

The AlignedLayerServiceManager Should use the initializer from the base class serviceManagerBase to handle ownership transfers rather than performing the transfer
directly. This ensures that ownership changes are processed consistently and in accordance with the base class’s established mechanisms.

Examples

contracts/src/core/AlignedLayerServiceManager.sol:L51-L54

function initialize(address _initialOwner) public initializer {
_transferOwnership(_initialOwner);

}

Recommendation

Modify the AlignedLayerServiceManager tO invoke the ownership transfer initializer provided by servicemanagersase instead of directly transferring ownership. This
approach maintains consistency and leverages the base class’s established initialization processes.

416 Solidity Coding Style Guideline Violations gz ek

Resolution

Addressed with yetanotherco/aligned_layer#843 and later with yetanotherco/aligned_layer#892 by adhering to standard Solidity style practices using solhint

hinter. For example:

e Custom errors are introduced

¢ Proper variable & argument capitalization

Description

Following the Solidity Style Guide wherever possible is advisable, especially when it comes to variable name conventions and code layout.

This can be consistently enforced across the entire code base by means of an automatic linter, such as Solhint.

Examples

e Variable names should begin lower case. Type declarations (including Contracts) begin upper case.

contracts/src/core/BatcherPaymentService.sol:L35-L40

address public AlignedLayerServiceManager;
address public BatcherWallet;

// map to user data
mapping(address => UserInfo) public UserData;

contracts/src/core/BatcherPaymentService.sol:L49-L61

function initialize(
address _AlignedLayerServiceManager,
address _BatcherPaymentServiceOwner,
address _BatcherWallet

) public initializer {
__Ownable_init(); // default is msg.sender
__UUPSUpgradeable_init();
_transferOwnership(_BatcherPaymentServiceOwner);

AlignedLayerServiceManager = _AlignedLayerServiceManager;
BatcherWallet = _BatcherWallet;

contracts/src/core/BatcherPaymentService.sol:L63-L66

receive() external payable {
UserData[msg.sender].balance += msg.value;
emit PaymentReceived(msg.sender, msg.value);

¢ Order of functions and modifiers
Declare modifiers before functions and don’t mix them.

contracts/src/core/BatcherPaymentService.sol:L159-L180

https://github.com/yetanotherco/aligned_layer/pull/842
https://github.com/yetanotherco/aligned_layer/pull/843
https://github.com/yetanotherco/aligned_layer/pull/892
https://docs.soliditylang.org/en/latest/style-guide.html
https://docs.soliditylang.org/en/latest/style-guide.html#local-and-state-variable-names
https://github.com/protofire/solhint

function _authorizeUpgrade(
address newImplementation
) internal override onlyOwner {}

modifier onlyBatcher() {
require(
msg.sender == BatcherWallet,
"Only Batcher can call this function"

)

-

function checkMerkleRootAndVerifySignatures(
bytes32[] calldata leaves,
bytes32 batchMerkleRoot,
SignatureData[] calldata signatures,
uint256 feePerProof
) public {
uint256 numNodesInLayer = leaves.length / 2;
bytes32[] memory layer = new bytes32[](numNodesInLayer);

4.7 Storage Layout Contract Should Be Declared abstract gmm (v

Resolution

Fixed with yetanotherco/aligned_layer#841 by declaring the contract abstract .

Description

The alignedLayerServiceManagerStorage contract defines the Service Manager storage layout without implementing contract logic. It’s not intended for standalone
deployment but isn't declared abstract, allowing potential misuse. This violates the principle of designing contracts for their intended purpose and could lead to
unexpected behavior if deployed independently.

Examples

contracts/src/core/AlignedLayerServiceManagerStorage.sol:L5-L20

contract AlignedLayerServiceManagerStorage {
struct BatchState {
uint32 taskCreatedBlock;
bool responded;
address batcherAddress;

mapping(bytes32 => BatchState) public batchesState;
mapping(address => uint256) internal batchersBalances;

uint256[48] private __GAP;

Recommendation

Modify the contract declaration to include the ‘abstract’ keyword, changing it to: abstract AlignedLayerServiceManagerStorage . This will prevent direct deployment of the
contract and clearly indicate its intended use as a base contract for inheritance.

418 Unused Imports orm (Ve

Resolution

Fixed with yetanotherco/aligned_layer#843 by removing the unused imports. We would like to note that the serviceManagerstorage contract may optionally

inherit IServiceManager .

Description
The following source units are imported but not referenced in the contract:
® AlignedLayerServiceManager unused IPauserRegistry , unused Pausable

contracts/src/core/AlignedLayerServiceManager.sol:L4-L6

import {Pausable} from "eigenlayer-core/contracts/permissions/Pausable.sol";
import {IPauserRegistry} from "eigenlayer-core/contracts/interfaces/IPauserRegistry.sol";

® AlignedLayerServiceManagerStorage.sol should inherit interface IServiceManager

contracts/src/core/AlignedLayerServiceManagerStorage.sol:L3

import "eigenlayer-middleware/interfaces/IServiceManager.sol";

Recommendation

Remove unused imports and implement the IServiceManager interface in AlignedLayerServiceManagerstorage . Conduct a thorough review of all contracts to identify and
eliminate any other unused imports or missing interface implementations.

419 Provide an Interface for AlignedLayerServiceManager (v

Resolution

Addressed with yetanotherco/aligned_layer#820 by providing an interface for the AlignedLayerserviceManager .

https://github.com/yetanotherco/aligned_layer/pull/841
https://github.com/yetanotherco/aligned_layer/pull/843
https://github.com/yetanotherco/aligned_layer/pull/820

Description

The AlignedLayerServiceManager contract extends the serviceManagerBase contract by adding public interfaces. To ensure proper contract interaction and adherence to
best practices, it is recommended to define an interface contract, 1alignedLayerServiceManager , that outlines these public methods. The AlignedLayerServiceManager
contract should then inherit from this interface.

contracts/src/core/AlignedLayerServiceManager.sol:L18-L22

contract AlignedlLayerServiceManager is
ServiceManagerBase,
BLSSignatureChecker,
AlignedLayerServiceManagerStorage

Recommendation

Define an interface contract 1AlignedLayerServiceManager that includes the public methods exposed by AlignedLayerServiceManager . Ensure that alignedLayerServiceManager
inherits from this interface to formalize the contract’s APl and enhance code clarity and interaction with external contracts.

4.20 Where Possible, a Specific Contract Type Should Be Used Rather Than address e

Resolution

Addressed with yetanotherco/aligned_layer#820 and yetanotherco/aligned_layer#853 by declaring AlignedLayerserviceManager With its contract type instead of

address .

Description

Consider using the best type available in the function arguments and declarations instead of accepting address and performing low-level calls or later casting it to
the correct type.

® address AlignedLayerServiceManager should be AlignedLayerServiceManager serviceManager

contracts/src/core/BatcherPaymentService.sol:L34-L36

address public AlignedLayerServiceManager;
address public BatcherWallet;

Appendix 1- Files in Scope

This audit covered the following files:

File SHA-1 hash
contracts/src/core/AlignedLayerServiceManager.sol 9846645b47a4a899dbf42caf72a3800F71b5ed4e
contracts/src/core/AlignedLayerServiceManagerStorage.sol 50a9257f5d313e2dda87285e95a2d3a7346dc9d6
contracts/src/core/BatcherPaymentService.sol d96289bd7c092138a2f677c26b2F99863e47bcoc

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via Consensys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the security of any particular project. This
Report does not consider, and should not be interpreted as considering or having any bearing on, the potential economics of a token, token sale or any other
product, service or other asset. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report
provides any warranty or representation to any third party in any respect, including regarding the bug-free nature of code, the business model or proprietors of
any such business model, and the legal compliance of any such business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically, for the avoidance of doubt, this Report does not constitute investment
advice, is not intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security
of the project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our review is limited to a review of
code and only the code we note as being within the scope of our review within this report. Any Solidity code itself presents unique and unquantifiable risks as the
Solidity language itself remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and
uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making these analyses publicly available, it
can help the blockchain ecosystem develop technical best practices in this rapidly evolving area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD. Such hyperlinks are provided for
your reference and convenience only, and are the exclusive responsibility of such web sites’ owners. You agree that Consensys and CD are not responsible for the
content or operation of such Web sites, and that Consensys and CD shall have no liability to you or any other person or entity for the use of third party Web sites.
Except as described below, a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that Web
site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to
which you link from the Reports. Consensys and CD assumes no responsibility for the use of third-party software on the Web Site and shall have no liability
whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice unless indicated otherwise, by
Consensys and CD.

POWERED BY c consensys

https://consensys.io/
https://github.com/yetanotherco/aligned_layer/pull/820
https://github.com/yetanotherco/aligned_layer/pull/853

