@Diligence

AUDITS

FUZZING SCRIBBLE ABOUT

Metamask Delegation Framework

1 Executive Summary

2 Scope

2.1 Objectives

3 Findings

3.1 Open Delegations Combined
With

NativeTokenPaymentEnforcer Are
Not Protected Against Front-
Running v Fixed

3.2 Front-Running in
NativeTokenPaymentEnforcer

v Fixed

3.3 Discrepancies Between the
ERC-7579 Draft Standard and
Delegator’s Implementation

m v Fixed

3.4 The

NativeTokenPaymentEnforcer

Enforcer May Change the Final
State in Contradiction With Other

Enforcers [Ii) | ¢ Fixed

Appendix 1- Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

Date August 2024

Auditors Rai Yang, Francois Legué

1 Executive Summary

This report presents the results of our engagement with MetaMask to review Metamask Delegation Framework.

The review was conducted over two weeks, from August 19, 2024 to August 30, 2024, by Rai Yang and Francois Legué. A total
of 20 person-days were spent.

The review focused on the updates implemented since last audit (commit hash ee9f363e1128c7ef214f36e08dcOcedb1069ef26).
The main updates include:

e The refactor of the delegation manager to support delegation batching
e The ERC 7579 execution support.

e New caveat enforcers: ArgsEqualityCheckEnforcer.sol , NativeBalanceGteEnforcer.sol , NativeTokenPaymentEnforcer.sol ,

NativeTokenTransferAmountEnforcer.sol , RedeemerEnforcer.sol .

2 Scope

Our review focused on the commit hash b68ce99e9a545e3899e1c3634a837f3460c32370. The list of files in scope can be found
in the Appendix.

2.1 Objectives
Together with the MetaMask/delegation-framework team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Findings

Each issue has an assigned severity:

) issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

. issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

issues are directly exploitable security vulnerabilities that need to be fixed.

3.1 0pen Delegations Combined With NativeTokenPaymentEnforcer Are Not Protected Against
Front-Running

v Fixed

Resolution

Fixed in PR16.

ArgsEqualityCheckEnforcer enforcer terms contain the delegation hash and the redeemer. This prevents an external actor from
front-running the payment when executing a delegation.

Description

The nNativeTokenPaymentEnforcer iS an enforcer that, combined with a delegation b1, ensures a delegate pays to redeem b1 .The
delegate that redeems the delegation b1 must include in the arguments of this enforcer a delegation b2 to the
NativeTokenPaymentEnforcer itself. It will give the right to the enforcer to pull the amount specified in the first place in the terms of the
NativeTokenPaymentEnforcer tO exercise the delegation b1 .

To prevent front-running and the use of the second delegation b2 by a malicious actor who inspects the mempool, the usage of
the ArgsEqualityCheckEnforcer enforcer is recommended with terms being the delegationHash Of the first delegation b1 . This will
ensure that the delegation that is being paid for with the delegation b2 is the delegation b1 . While this works well when the
delegation b1 is restricted to a specific delegate, it is not sufficient in the case of open delegations.

https://github.com/MetaMask/delegation-framework/tree/b68ce99e9a545e3899e1c3634a837f3460c32370
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://github.com/MetaMask/delegation-framework/pull/16
https://consensys.net/diligence/
https://consensys.net/diligence/audits/
https://consensys.net/diligence/fuzzing/
https://consensys.net/diligence/scribble/
https://consensys.net/diligence/about/

The Delegator framework offers the possibility to create an open delegation. The purpose of an open delegation is that it can be
redeemed by anyone.

The problem is that the computed delegationHash , is based on the fields of the delegation structure and the enforcers terms.
However, in case of an open delegation, the delegate field will contain the same value (anv_peLecaTe) regardless of who is currently
redeeming the delegation.

The DpelegationManager contract will accept the redeem from anyone when the delegation delegate field is any_DELEGATE .

src/DelegationManager.sol:L154

if (delegations_[@].delegate != msg.sender && delegations_[0].delegate != ANY_DELEGATE) {

In such a scenario, anyone using b1 would share the same delegationHash in the arguments. Consequently, someone could watch
the mempool and front-run a legitimate redeem by leveraging the delegation b2 . The attacker would be able to execute his own
action with the delegation b1 but use the delegation b2 (which was generated by someone else) to pay the right to exercise it.

Recommendation

Ensure that the consumer of the delegation b2 (also known as immediate delegator) is the current redeemer of the delegation
p1 . This could be done using the redeemer parameter of the afterook function of the NativeTokenPaymentEnforcer enforcer.

3.2 Front-Running in NativeTokenPaymentEnforcer g (v

Resolution

Fixed in PR16.

ArgsEqualityCheckEnforcer iS NOW enforced when using NativeTokenPaymentEnforcer . Its terms contain the delegation hash and the
redeemer. This prevents an external actor from front-running the payment when executing a delegation.

Description

In NativeTokenPaymentEnforcer , the redeemer must include a payment delegation to pay the delegator to execute an execution. The
payment delegation can be created by the redeemer or some other contract or account in behave of the redeemer(e.g.
redeemer’s smart account). However, this setup introduces a vulnerability where another redeemer can front-run the original
redeemer by capturing and utilizing the same payment delegation specified in the _args parameter of the aftertook function in
the NativeTokenPaymentEnforcer . INn such cases, the payment would still be covered by the original redeemer or its root delegator.

To prevent front-running, it is recommended to use the AargsEqualitycheckEnforcer tO ensure that the redemption can only be
executed by the original redeemer and the delegation is not open (delegate != any_DELEGATE), this is done by validating the
delegation hash (_delegationHash), which is derived from the redeemed delegation. However the use of ArgsequalityCheckEnforcer iS
currently optional within the payment delegation, not mandatory. Furthermore, even it's enforced, the vulnerability remains when
the delegation is open (issue 3.1) . In this scenario, the _delegationHash would be identical for any redeemer, which fails to prevent
front-running effectively.

Examples

src/enforcers/NativeTokenPaymentEnforcer.sol:L78-L102

Delegation[] memory delegations_ = abi.decode(_args, (Delegation[]));

for (uint256 x = @; x < delegations_.length; ++x) {
Delegation memory delegation_ = delegations_[x];
for (uint256 i = @; i < delegation_.caveats.length; ++i) {
if (delegation_.caveats[i].enforcer == argsEqualityCheckEnforcer) {
delegation_.caveats[i].args = abi.encodePacked(_delegationHash);

}

}

bytes[] memory permissionContexts_ = new bytes[](1);
permissionContexts_[@] = abi.encode(delegations_);

bytes[] memory executionCallDatas_ = new bytes[](1);
executionCallDatas_[@] = ExecutionLib.encodeSingle(recipient_, amount_, hex"");

ModeCode[] memory encodedModes_ = new ModeCode[](1);
encodedModes_[0] = ModelLib.encodeSimpleSingle();

uint256 balanceBefore_ = recipient_.balance;

delegationManager.redeemDelegations(permissionContexts_, encodedModes_, executionCallDatas_);

Recommendation

In function aftertook add a require statement to check whether the immediate delegator (delegation_[0].delegator) Of the payment
delegation is equal to the redeemer (_redeemer).

3.3 Discrepancies Between the ERC-7579 Draft Standard and Delegator’s Implementation ¢z

v Fixed

https://github.com/MetaMask/delegation-framework/pull/16

Resolution

Fixed in PR16.

The documentation now mentions what parts of the standard have been implemented and what aspects were excluded.

Description

The standard erc-7579 outlines the minimal required interfaces and behavior for modular smart accounts to ensure
interoperability across implementations. However, It should be noted that this ERC is currently in draft status and may be prone
to changes until it reaches the final version.

The current Delegator implementation contains discrepancies with the ERC-7579 draft. Here is a list of identified discrepancies:

the account must implement the account config interface which is composed of the following functions:

o accountId() : helps to identify the current account;
o supportsExecutionMode() : helps to determine which execution mode is supported;

© supportsModule() : helps to know which module is supported.

the account must implement the module config interface which is composed of the following functions:

O installModule() : installs a new module;
O uninstallModule() : uninstalls a module;

O isModuleInstalled : helps to know if a module is installed.

Each component must implement the module interface which is composed of the following functions:

o onInstall() : callback executed by the smart contract account on installation;
o onuUninstall() : callback executed by the smart contract account on uninstallation;

o isModuleType() : helps to determine the type of the current module;

The standard separate modules into the different types:

o Validation (type: 1): The signature validation function implemented in HybridbeleGator and MultiSigbelegator Must be in
modules of Validation type;

o Execution (type: 2): pelegateManager contract must be registered as a module of type Execution because it is the contract
that can execute transactions on behalf of the smart account via a callback.

o Fallback (type: 3);

o Hooks (type: 4): Enforcers contracts must be registered as modules of type hooks.

e The hooks in erc-7579 standard are the equivalent of enforcers in the Delegator’s codebase. To comply with the naming
convention of the standard, the functions must be respectively changed from beforeHook and afterHook tO precheck and

postCheck

Recommendation

Modify the current architecture and/or implement the missing features to comply with the ERC-7579 standard. However, as the
standard is in draft status, it may change until its final version.

3.4 The NativeTokenPaymentEnforcer Enforcer May Change the Final State in Contradiction
With Other Enforcers grm (Ve

Resolution

Fixed in PR16.

The documentation now details how the NativeTokenPaymentEnforcer Works and warns about its potential side effects.

Description

The nNativeTokenPaymentEnforcer IS an enforcer that, combined with a delegation, ensures a delegate pays to redeem it. This enforcer
relies on a second delegation that gives the right (to the nNativeTokenPaymentEnforcer e€nforcer) to pull the necessary amount to pay to
exercise the first delegation. This is done through another call to the redeembelegation With a specifically crafted executioncalipata
that will call the recipient sending the funds.

src/enforcers/NativeTokenPaymentEnforcer.sol:L94

executionCallDatas_[@] = ExecutionLib.encodeSingle(recipient_, amount_, hex"");

When this inner delegation is redeemed, a callback to the recipient is performed. During this callback, the recipient gains
execution control flow and can perform arbitrary calls that can change the final state of the transaction.

It is to be kept in mind that this callback could contradict the restrictions put in place with the enforcers of the first delegation
but after the executions of the afterHook Of these ones.

Recommendation

https://github.com/MetaMask/delegation-framework/pull/16
https://github.com/MetaMask/delegation-framework/pull/16

A strong warning should be mentioned for the nativeTokenPaymentEnforcer enforcer that the payment gives potential code execution
to the recipient and that it could completely change the final state of the transaction.

Appendix 1 - Files in Scope

This audit covered the following files:

File

src/DeleGatorCore.sol
src/DelegationManager.sol
src/HybridDeleGator.sol
src/MultiSigDeleGator.sol
src/enforcers/AllowedCalldataEnforcer.sol
src/enforcers/AllowedMethodsEnforcer.sol
src/enforcers/AllowedTargetsEnforcer.sol
src/enforcers/ArgsEqualityCheckEnforcer.sol
src/enforcers/BlockNumberEnforcer.sol
src/enforcers/CaveatEnforcer.sol
src/enforcers/DeployedEnforcer.sol
src/enforcers/ERC20BalanceGteEnforcer.sol
src/enforcers/ERC20TransferAmountEnforcer.sol
src/enforcers/IdEnforcer.sol
src/enforcers/LimitedCallsEnforcer.sol
src/enforcers/NativeBalanceGteEnforcer.sol
src/enforcers/NativeTokenPaymentEnforcer.sol
src/enforcers/NativeTokenTransferAmountEnforcer.sol
src/enforcers/NonceEnforcer.sol
src/enforcers/RedeemerEnforcer.sol
src/enforcers/TimestampEnforcer.sol
src/enforcers/ValuelLteEnforcer.sol
src/interfaces/ICaveatEnforcer.sol
src/interfaces/IDeleGatorCore.sol
src/interfaces/IDelegationManager.sol
src/interfaces/IERC173.so0l
src/libraries/ERC1271Lib.sol
src/libraries/EncoderLib.sol
src/libraries/P256FCLVerifierLib.sol
src/libraries/P256VerifierLib.sol
src/libraries/WebAuthn.sol
src/libraries/utils/Base64URL.sol
src/utils/Constants.sol
src/utils/SimpleFactory.sol

src/utils/Types.sol

SHA-1 hash

5a2a88f81ecdf7584caB934bc398069b29691d3886
b8b1c17ff7d3c2e1e47fd7e461e778d0ad17cf09
8f1232719c8e41¢c2f160459095affbd647ffff86
19b677d316285c78cefb13dd2cd@8c3b768dccced
2f72c6914706eabfa846aBa664dfe2da7b29bch6
cee4d9e021108918d6ebbba436118f5d4e4f51ac
84c621ee778d0d66aa63952224f91a6a818367d2
53222364165890ac0d540ef9fcfB58f02aee3f9
Obce813009249b92502840dbc4b93e21ch5fe988
49b200dbbaaal4b34d6bBadced6f7183e23e1ef0
d5c35230fe96ade72d0f7176¢c12759dc84f2edfa
581ef406e4dae732de3469b8b951599eac514578
31709de966f01bB3eefBBfcd23e013945a059¢ec3
8fc361f7dc8e60f4aeb94680eb6baf297a862c78¢c
157f32f206b5ef34abdb1ee8a54c15f3db8fefc9
€64513c8e2f11e57bc77f503d2fbd3d7bbe95568
d1202ed7d87e70009edf82165d341e9ead629940
5e0fb9d0Be71a3be917a09e60bf4c1cdd80a575b
7deb2afd85df629cb82dcb7518d1ebB5e61e080d
6171a0434505cf50adb9912afd6a1503553b8c10
c4884e1416d318bb9f8a6f21385e6fb87b821d8e
dcc1fa86b2ded24cddee3bB7daccf440f3e9512e
6874e633d56fal166ec14eab87a656145c3c7deas
€308d7809f972e58251a3a9d2fb6789df714ee32
8947ef1d8099aBac5bd21793eb8bcf470eeb6al14
98840c9d3b5f5d090fdd45707a42bb99f206bfe8
227e93f2944c118ec6af8c720d388117b557a704
445bb6ed8377e48e13b9d96043785ee3665a542f
53cef8bc609642ce6af3802112b88a6317537374
08a58e2610cB1054a30d48ee7c4c49h73c318454
00c200ce9094677edad342ccc4429b9d8143a5ab
16a170f5ade38bc457c265d8804c27¢cb2865215¢
593a1a250e824b5b322f0c259bcf9ca3ab13aaec
8bbb90b2b4c778a6d244b867e13bc970a89¢c9717

c54fcebbbba459ae01dd87¢1f9302bcede196988

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY c consensys

https://consensys.io/

