
Linea Rollup Update

Date December 2024

Auditors
Rai Yang, Vladislav
Yaroshuk

1 Executive Summary
This report presents the results of our engagement with Linea to review Linea
Rollup Update.

The review was conducted over two weeks, from November 25, 2024 to December 6, 2024, by Rai Yang and Vladislav
Yaroshuk. A total of 20 person-days were spent.

We reviewed the updates implemented between the current commit and the previous audit commit. The key updates include:

High priority changes

Adjust Blob Submission and Finalization Events to be State Reconstruction compatible.

Create granular roles for contracts V2: - does not include TokenBridge.

Granular Roles for TokenBridge V2.

Remove finalizeBlocksWithoutProof.

Allow any address to finalize blocks if no finalization happened in the last 6 months.

Medium priority changes

Bump solidity version to 0.8.26 across the repository.

Return better error when verifier fails.

Optimize message and new token creation hashing.

Low priority changes

Apply Diligence Findings From Last Audit Round.

Initialize-L2-MinimumFee.

Ratelimiter ignores reset when affected amount is zero.

Add leaf index check in sparse merkle tree verifier.

Cleanup errors and interfaces.

Complete contracts recommendation.

2 Scope
Our review focused on the difference between commit hash b17e7c79b5647e47c175c6367dea30c3f1c66738 and commit hash
adb097aff4d7d32da843b16c9e1c1b21eecbf955 . The list of files in scope can be found in the Appendix.

2.1 Objectives

Together with the Linea team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Security Specification
This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation. The purpose of this section is to identify specific security properties that were validated by the audit team.

3.1 Actors

The relevant actors with their respective abilities that are changed are listed below:

Operator: Submits block data either by blobs or compressed data to L1 contract depending on the gas cost.

Fallback Operator: Will be granted Operator role if blocks hasn’t been finalized for 6 month, can’t renounce himself.

Security Council: Grants and revokes roles.

Custom roles which can be set up in the PauseManager contract during initialization with the access to pause and unpause
different functionality.

3.2 Trust Model

In any system, it’s important to identify what trust is expected/required between various actors. For this audit, we established the
trust model remains unchanged from the previous versions

3.3 Security Properties

The following is a non-exhaustive list of security properties that were reviewed in this audit:

1 Executive Summary

2 Scope

2.1 Objectives

3 Security Specification

3.1 Actors

3.2 Trust Model

3.3 Security Properties

4 Findings

4.1 Hardcoded GENESIS_SHNARF Is
Incompatible With New Networks

Medium Acknowledged

4.2 Missing Validation for Fallback
Operator Address Medium

4.3 Missing Validation for
chainID in TokenBridge

Contract Medium

4.4 Missing Validation for
defaultAdmin in Contract

Initialization Medium

4.5 Ability to Pause and Unpause
Using UNUSED Pause Type Minor

4.6 Redundant Validation of Block
Number in Finalization Minor

4.7 Redundant Parameter in the
_computePublicInput Minor

4.8 Redundant Initializable
Import

4.9 Use of
abi.encodeWithSelector Instead

of abi.encodeCall

4.10 Lack of Role Reconfiguration
Mechanism in PauseManager

4.11 Lack of Restriction for
Overwriting Existing Verifier
Addresses in
setVerifierAddress

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

AUDITS FUZZING SCRIBBLE ABOUT

https://github.com/Consensys/linea-contracts/tree/b17e7c79b5647e47c175c6367dea30c3f1c66738
https://github.com/Consensys/linea-contracts/tree/b17e7c79b5647e47c175c6367dea30c3f1c66738
https://github.com/Consensys/linea-contracts/tree/b17e7c79b5647e47c175c6367dea30c3f1c66738
https://github.com/Consensys/linea-contracts/tree/b17e7c79b5647e47c175c6367dea30c3f1c66738
https://github.com/Consensys/linea-monorepo/tree/adb097aff4d7d32da843b16c9e1c1b21eecbf955
https://github.com/Consensys/linea-monorepo/tree/adb097aff4d7d32da843b16c9e1c1b21eecbf955
https://github.com/Consensys/linea-monorepo/tree/adb097aff4d7d32da843b16c9e1c1b21eecbf955
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.io/
https://consensys.io/audits/
https://consensys.io/fuzzing/
https://consensys.io/scribble/
https://consensys.io/about/

EIP-4844 blob submission, validation and finalization is correct and sound. Particularly the removed block numbers in the
blob/calldata submission are verified in the proof in the finalization.

Proof verification is sound (public input generation).

Storage layout is not broken.

Changes to the Shnarf for data submission cardinality is correct and sound.

Efficient hashing for data submission, public input, Shnarf and last finalized state is correct.

All the roles are not compromised and are being operated correctly.

4 Findings
Each issue has an assigned severity:

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Critical issues are directly exploitable security vulnerabilities that need to be fixed.

4.1 Hardcoded GENESIS_SHNARF Is Incompatible With New Networks Medium Acknowledged

Description

In the initialize function of the LineaRollup contract, the genesis shnarf (GENESIS_SHNARF) is hard-coded, it cannot work with new
networks that has a different genesis shnarf without modifying the contract, thus restricts the contract’s adaptability and
interoperability across different networks.

Examples

contracts/contracts/LineaRollup.sol:L143-L143

currentFinalizedShnarf = GENESIS_SHNARF;

contracts/contracts/LineaRollup.sol:L398-L414

function _computeShnarf(
 bytes32 _parentShnarf,
 bytes32 _snarkHash,
 bytes32 _finalStateRootHash,
 bytes32 _dataEvaluationPoint,
 bytes32 _dataEvaluationClaim
) internal pure returns (bytes32 shnarf) {
 assembly {
 let mPtr := mload(0x40)
 mstore(mPtr, _parentShnarf)
 mstore(add(mPtr, 0x20), _snarkHash)
 mstore(add(mPtr, 0x40), _finalStateRootHash)
 mstore(add(mPtr, 0x60), _dataEvaluationPoint)
 mstore(add(mPtr, 0x80), _dataEvaluationClaim)
 shnarf := keccak256(mPtr, 0xA0)
 }
}

Recommendation

Remove the hard-coded genesis shnarf , compute it from a parameter passed in the initialize function (
_initializationData.initialStateRootHash).

4.2 Missing Validation for Fallback Operator Address Medium

Description

In the initialize function of the LineaRollup contract, there is no validation for fallback operator address(
_initializationData.fallbackOperator) to be non zero. As a result, the fall back operator would fail to work in case of Linea stops

submitting blobs and finalizing for 6 months.

Examples

contracts/contracts/LineaRollup.sol:L135

fallbackOperator = _initializationData.fallbackOperator;

Recommendation

Add the missing non-zero validation for fallback operator address.

4.3 Missing Validation for chainID in TokenBridge Contract Medium

Description

In the initialize function of the TokenBridge contract, the source chainID (_initializationData.sourceChainId) and target chain ID (
_initializationData.targetChainId) of the bridge is not validated to be distinct and neither is set to zero. As a result, incorrect chain ID

will be set or identical chain IDs for the source and target chains, which fundamentally compromises the functionality of the
bridge by allowing for the possibility of erroneous or unintended bridge operations.

Examples

contracts/contracts/tokenBridge/TokenBridge.sol:L160-L161

sourceChainId = _initializationData.sourceChainId;
targetChainId = _initializationData.targetChainId;

Recommendation

Add the validation for source and target chain ID to ensure they are distinct and non-zero.

4.4 Missing Validation for defaultAdmin in Contract Initialization Medium

Description

In the initialize function of both the LineaRollup and TokenBridge contract, the DEFAULT_ADMIN_ROLE role of the contract is granted to
_initializationData.defaultAdmin , which is presumed to be security council account. However there is no validation checks to ensure

that _initializationData.defaultAdmin is not a zero address. The absence of such validation could potentially result in the contracts
being initialized without a designated Admin, compromising the permission management system within these contracts and
leaving the contracts vulnerable to unauthorized access and manipulation.

Examples

contracts/contracts/LineaRollup.sol:L129

_grantRole(DEFAULT_ADMIN_ROLE, _initializationData.defaultAdmin);

contracts/contracts/tokenBridge/TokenBridge.sol:L155

_grantRole(DEFAULT_ADMIN_ROLE, _initializationData.defaultAdmin);

Recommendation

Add validation of non zero address for _initializationData.defaultAdmin in the initialize function for both the LineaRollup and
TokenBridge contracts.

4.5 Ability to Pause and Unpause Using UNUSED Pause Type Minor

Description

The pauseByType and unPauseByType functions allow pausing and unpausing functionality by specifying a PauseType value. However,
the UNUSED pause type, which is intended as a default value, can still be used in these functions. This creates a potential issue
where someone could unintentionally pause or unpause using the UNUSED type and the transaction will successfully pass, which
can make the authorised role think that the execution has been paused with the GENERAL type, but it will have no effect to the
system.

Examples

contracts/contracts/lib/PauseManager.sol:L110-L136

/**
 * @notice Pauses functionality by specific type.
 * @dev Requires the role mapped in `_pauseTypeRoles` for the pauseType.
 * @param _pauseType The pause type value.
 */
function pauseByType(PauseType _pauseType) external onlyRole(_pauseTypeRoles[_pauseType]) {
 if (isPaused(_pauseType)) {
 revert IsPaused(_pauseType);
 }

 _pauseTypeStatusesBitMap |= 1 << uint256(_pauseType);
 emit Paused(_msgSender(), _pauseType);
}

/**
 * @notice Unpauses functionality by specific type.
 * @dev Requires the role mapped in `_unPauseTypeRoles` for the pauseType.
 * @param _pauseType The pause type value.
 */
function unPauseByType(PauseType _pauseType) external onlyRole(_unPauseTypeRoles[_pauseType]) {
 if (!isPaused(_pauseType)) {
 revert IsNotPaused(_pauseType);
 }

 _pauseTypeStatusesBitMap &= ~(1 << uint256(_pauseType));
 emit UnPaused(_msgSender(), _pauseType);
}

Recommendation

Add validation to the pauseByType and unPauseByType functions to prevent the use of the UNUSED pause type.

4.6 Redundant Validation of Block Number in Finalization Minor

Description

In the _finalizeBlocks function of the LineaRollup contract, the latest block number (_finalizationData.endBlockNumber) in the
finalization is validated that it’s greater than the last finalized block number (_lastFinalizedBlock) to ensure the block number
sequence is correct during the finalization process. However the block number sequence is already verified in the proof along
with the state in the finalization. Therefore this validation to compare the latest and last finalized block numbers is unnecessary.

Examples

contracts/contracts/LineaRollup.sol:L507-L509

if (_finalizationData.endBlockNumber <= _lastFinalizedBlock) {
 revert FinalBlockNumberLessThanOrEqualToLastFinalizedBlock(_finalizationData.endBlockNumber, _lastFinalizedBlock);
}

contracts/contracts/LineaRollup.sol:L486-L494

uint256 publicInput = _computePublicInput(
 _finalizationData,
 lastFinalizedShnarf,
 finalShnarf,
 lastFinalizedBlockNumber,
 _finalizationData.endBlockNumber
);

_verifyProof(publicInput, _proofType, _aggregatedProof);

Recommendation

Remove the validation to compare the latest and last finalized block numbers in _finalizeBlocks .

4.7 Redundant Parameter in the _computePublicInput Minor

Description

In the function _computePublicInput of the LineaRollup contract, the parameter _endBlockNumber is redundant as it’s included in the
parameter _finalizationData , the function can load the parameter from _finalizationData directly.

Examples

contracts/contracts/LineaRollup.sol:L683-L689

function _computePublicInput(
 FinalizationDataV3 calldata _finalizationData,
 bytes32 _lastFinalizedShnarf,
 bytes32 _finalShnarf,
 uint256 _lastFinalizedBlockNumber,
 uint256 _endBlockNumber
) private pure returns (uint256 publicInput) {

contracts/contracts/interfaces/l1/ILineaRollup.sol:L102-L115

struct FinalizationDataV3 {
 bytes32 parentStateRootHash;
 uint256 endBlockNumber;
 ShnarfData shnarfData;
 uint256 lastFinalizedTimestamp;
 uint256 finalTimestamp;
 bytes32 lastFinalizedL1RollingHash;
 bytes32 l1RollingHash;
 uint256 lastFinalizedL1RollingHashMessageNumber;
 uint256 l1RollingHashMessageNumber;
 uint256 l2MerkleTreesDepth;
 bytes32[] l2MerkleRoots;
 bytes l2MessagingBlocksOffsets;
}

Recommendation

Remove the parameter _endBlockNumber and load it from _finalizationData inside the function using calldatacopy

4.8 Redundant Initializable Import

Description

The LineaRollup contract redundantly imports Initializable from OpenZeppelin:

contracts/contracts/LineaRollup.sol:L4

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

However, Initializable is already inherited through AccessControlUpgradeable , which includes the Initializable contract in its own
inheritance hierarchy:

abstract contract AccessControlUpgradeable is Initializable, ContextUpgradeable, IAccessControlUpgradeable, ERC165Upgradeable

The PermissionsManager contract, ZkEvmV2 contract, PauseManager contract, L1MessageServiceV1 contract, L2MessageManagerV1 contract,
RateLimiter contract, TokenBridge contract are also redundantly imports Initializable contract:

contracts/contracts/lib/PermissionsManager.sol:L4-L14

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";
import { AccessControlUpgradeable } from "@openzeppelin/contracts-upgradeable/access/AccessControlUpgradeable.sol";
import { IGenericErrors } from "../interfaces/IGenericErrors.sol";
import { IPermissionsManager } from "../interfaces/IPermissionsManager.sol";

/**
 * @title Contract to manage permissions initialization.
 * @author ConsenSys Software Inc.
 * @custom:security-contact security-report@linea.build
 */
abstract contract PermissionsManager is Initializable, AccessControlUpgradeable, IPermissionsManager, IGenericErrors {

contracts/contracts/tokenBridge/TokenBridge.sol:L14

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contracts/contracts/ZkEvmV2.sol:L4

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contracts/contracts/messageService/lib/RateLimiter.sol:L4

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contracts/contracts/messageService/l1/v1/L1MessageServiceV1.sol:L4

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

contracts/contracts/messageService/l2/v1/L2MessageServiceV1.sol:L4

import { Initializable } from "@openzeppelin/contracts-upgradeable/proxy/utils/Initializable.sol";

This duplicate import is unnecessary and increases code complexity without providing additional functionality.

Recommendation

We recommend removing the redundant Initializable import, this cleanup will reduce unnecessary imports, improving code
clarity and maintainability. The contract will still compile correctly as the Initializable features are inherited through
AccessControlUpgradeable or other contracts.

4.9 Use of abi.encodeWithSelector Instead of abi.encodeCall

Description

The _verifyProof function uses abi.encodeWithSelector to encode the function call data for the call operation with the verifier
contract. While this approach is functional, it lacks the compile-time type safety provided by abi.encodeCall , introduced in Solidity
version 0.8.11 . The absence of type checking increases the risk of encoding errors due to mismatches between the expected
and actual types, which could lead to runtime failures.

Examples

contracts/contracts/ZkEvmV2.sol:L51-L53

(bool callSuccess, bytes memory result) = verifierToUse.call(
 abi.encodeWithSelector(IPlonkVerifier.Verify.selector, _proof, publicInput)
);

Recommendation

Replace abi.encodeWithSelector with abi.encodeCall to leverage compile-time type checking and adhere to Solidity best practices:

(bool callSuccess, bytes memory result) = verifierToUse.call(
 abi.encodeCall(IPlonkVerifier.Verify, (_proof, publicInput))
);

4.10 Lack of Role Reconfiguration Mechanism in PauseManager

Description

The __PauseManager_init function is used to initialize the pause and unpause roles during PauseManager contract deployment.
However, the design does not include a mechanism to reconfigure or update these roles after initialization, the initialization
function is the only one which can modify _pauseTypeRoles and _unPauseTypeRoles mappings. If a role is compromised, there is no way
to revoke or reassign it, potentially allowing malicious actors to pause or unpause the system indefinitely, as well as if roles are

https://github.com/OpenZeppelin/openzeppelin-contracts/issues/3693

configured incorrectly during initialization or not configured at all, for example if the pause role has been configured and
unpause role hasn’t, the only recourse is to redeploy the contract, which is costly and operationally challenging.

Examples

contracts/contracts/lib/PauseManager.sol:L13-L18

abstract contract PauseManager is Initializable, IPauseManager, AccessControlUpgradeable {
 /// @notice This is used to pause all pausable functions.
 bytes32 public constant PAUSE_ALL_ROLE = keccak256("PAUSE_ALL_ROLE");

 /// @notice This is used to unpause all unpausable functions.
 bytes32 public constant UNPAUSE_ALL_ROLE = keccak256("UNPAUSE_ALL_ROLE");

contracts/contracts/lib/PauseManager.sol:L61-L80

/**
 * @notice Initializes the pause manager with the given pause and unpause roles.
 * @dev This function is called during contract initialization to set up the pause and unpause roles.
 * @param _pauseTypeRoleAssignments An array of PauseTypeRole structs defining the pause types and their associated roles.
 * @param _unpauseTypeRoleAssignments An array of PauseTypeRole structs defining the unpause types and their associated roles.
 */
function __PauseManager_init(
 PauseTypeRole[] calldata _pauseTypeRoleAssignments,
 PauseTypeRole[] calldata _unpauseTypeRoleAssignments
) internal onlyInitializing {
 for (uint256 i; i < _pauseTypeRoleAssignments.length; i++) {
 _pauseTypeRoles[_pauseTypeRoleAssignments[i].pauseType] = _pauseTypeRoleAssignments[i].role;
 emit PauseTypeRoleSet(_pauseTypeRoleAssignments[i].pauseType, _pauseTypeRoleAssignments[i].role);
 }

 for (uint256 i; i < _unpauseTypeRoleAssignments.length; i++) {
 _unPauseTypeRoles[_unpauseTypeRoleAssignments[i].pauseType] = _unpauseTypeRoleAssignments[i].role;
 emit UnPauseTypeRoleSet(_unpauseTypeRoleAssignments[i].pauseType, _unpauseTypeRoleAssignments[i].role);
 }
}

Recommendation

We recommend reviewing the architecture and adding configuration functions if neccesary, for example:

function updatePauseRole(uint256 pauseType, bytes32 newRole) external onlyRole(PAUSE_ALL_ROLE) {
 require(newRole != bytes32(0), "Invalid role");
 _pauseTypeRoles[pauseType] = newRole;
 emit PauseTypeRoleSet(pauseType, newRole);
}

function updateUnpauseRole(uint256 pauseType, bytes32 newRole) external onlyRole(UNPAUSE_ALL_ROLE) {
 require(newRole != bytes32(0), "Invalid role");
 _unPauseTypeRoles[pauseType] = newRole;
 emit UnPauseTypeRoleSet(pauseType, newRole);
}

This would allow for dynamic role reconfiguration while maintaining security through appropriate access controls.

4.11 Lack of Restriction for Overwriting Existing Verifier Addresses in setVerifierAddress

Description

The setVerifierAddress function allows the role with VERIFIER_SETTER_ROLE to update the verifier address for a given proof type to set
it, while with the unsetVerifierAddress function the VERIFIER_UNSETTER_ROLE has an access to unset this value. While the access for
management of setter and unsetter function is designed to be separated, there are no restrictions for VERIFIER_SETTER_ROLE

preventing the overwriting of existing verifier addresses with arbitrary values, such as dead addresses (0xdead) and by doing that
successfully unsetting the verifier contract. Separating roles enhance security of the protocol, as if the VERIFIER_SETTER_ROLE is
compromised, it shouldn’t be able to unset the verifier blocking all of the execution, but with the current design the setter role
can unset values to other dead addresses, only except for zero address, making the VERIFIER_UNSETTER_ROLE role and
unsetVerifierAddress function almost redundant, and VERIFIER_SETTER_ROLE role overpowered.

Examples

contracts/contracts/LineaRollup.sol:L30-L34

/// @notice The role required to set/add proof verifiers by type.
bytes32 public constant VERIFIER_SETTER_ROLE = keccak256("VERIFIER_SETTER_ROLE");

/// @notice The role required to set/remove proof verifiers by type.
bytes32 public constant VERIFIER_UNSETTER_ROLE = keccak256("VERIFIER_UNSETTER_ROLE");

contracts/contracts/LineaRollup.sol:L189-L204

/**
 * @notice Adds or updates the verifier contract address for a proof type.
 * @dev VERIFIER_SETTER_ROLE is required to execute.
 * @param _newVerifierAddress The address for the verifier contract.
 * @param _proofType The proof type being set/updated.
 */
function setVerifierAddress(address _newVerifierAddress, uint256 _proofType) external onlyRole(VERIFIER_SETTER_ROLE) {
 if (_newVerifierAddress == address(0)) {
 revert ZeroAddressNotAllowed();
 }

 emit VerifierAddressChanged(_newVerifierAddress, _proofType, msg.sender, verifiers[_proofType]);

 verifiers[_proofType] = _newVerifierAddress;
}

contracts/contracts/LineaRollup.sol:L229-L238

/**
 * @notice Unset the verifier contract address for a proof type.
 * @dev VERIFIER_UNSETTER_ROLE is required to execute.
 * @param _proofType The proof type being set/updated.
 */
function unsetVerifierAddress(uint256 _proofType) external onlyRole(VERIFIER_UNSETTER_ROLE) {
 emit VerifierAddressChanged(address(0), _proofType, msg.sender, verifiers[_proofType]);

 delete verifiers[_proofType];
}

Recommendation

We recommend reviewing current roles, and if needed restricting the ability to overwrite existing verifier addresses to cases
where the current address is unset (address(0)). For example:

if (verifiers[_proofType] != address(0)) {
 revert("Cannot overwrite existing verifier address");
}

Appendix 1 - Files in Scope
This audit covered the following files:

File SHA-1 hash

contracts/contracts/LineaRollup.sol 7a894ebf3c265ec95c30fd103cd36f81094b49b
0

contracts/contracts/ZkEvmV2.sol 331303e4817f53dfc562a8576d3a0a4df1be5e7
2

contracts/contracts/interfaces/IGenericErrors.sol 18b23eff87ee67397ba14c605d4c9032b4c92f9
f

contracts/contracts/interfaces/IMessageService.sol 55a04ced3aa0fbc64df5723a10e27f7bef0d453
2

contracts/contracts/interfaces/IPauseManager.sol f98f815e0b287660c184371c27119a583fe21f0
2

contracts/contracts/interfaces/IPermissionsManager.sol 194ee54bf6aab3b7d27c7077c368e13c773bf88
8

contracts/contracts/interfaces/IRateLimiter.sol 35eaa8b555e3d6a6af9223a1f834d6d50a65336
e

contracts/contracts/interfaces/l1/IL1MessageManager.sol aa292bdfc1f97dcc22038b3b3eaedbdd969a4ff
9

contracts/contracts/interfaces/l1/IL1MessageManagerV1.sol 2bb90a7c41abefe1e40c39fbc1f522dee69486d
1

contracts/contracts/interfaces/l1/IL1MessageService.sol 7b662cb6a858ee4f30fec25300c094680fed221
f

contracts/contracts/interfaces/l1/ILineaRollup.sol 7ae593a1580e5db2e73f7f58298e7ae7bc96987
f

contracts/contracts/interfaces/l1/IPlonkVerifier.sol 641a36cf60115831e77705c4b16783b0255ff91
7

contracts/contracts/interfaces/l1/IZkEvmV2.sol dd1d4a9fe0ea51b3dc692b8f9fa761a2f0069d9
2

contracts/contracts/interfaces/l2/IL2MessageManager.sol 2da34026dc6365bd7be5fc3b96540536538a51a
d

contracts/contracts/interfaces/l2/IL2MessageManagerV1.sol 437fb3c7195fb0207cd688ba5823eecac4479e7
6

contracts/contracts/interfaces/l2/IL2MessageServiceV1.sol facddf5d0218a48f490c5eb3ca83be2c27d6453
e

contracts/contracts/interfaces/tools/IRecoverFunds.sol f89f0106cab16caefeea3c171fa462e62a7f0bd
f

contracts/contracts/lib/L2MessageServicePauseManager.sol 623db409585f55e0dd8e896d89f6f4999c9d497
8

contracts/contracts/lib/LineaRollupPauseManager.sol 4ec42e07c7e018612dbafe9299c50560078646b
3

File SHA-1 hash
contracts/contracts/lib/Mimc.sol 856e99a7545e99472afd9325b0f7eadc08d6016

1

contracts/contracts/lib/PauseManager.sol b296ed26d1ac2f204dfc47e99e8b75c50971f67
a

contracts/contracts/lib/PermissionsManager.sol 033839cd54c37a497ef89330a2e2d72c1173507
3

contracts/contracts/lib/SparseMerkleProof.sol 6b7dfac8eac9751dbebbb412debbe90c2931088
9

contracts/contracts/lib/TokenBridgePauseManager.sol 2feddbeca5e7d68747845c91c808a23dd1c0303
3

contracts/contracts/lib/Utils.sol e135639686ae118a11f6a888dff41dc1a5930e4
6

contracts/contracts/messageService/MessageServiceBase.sol 671d90ec76b19ad5ae5f77cba0253b657efc67e
2

contracts/contracts/messageService/l1/L1MessageManager.sol 1871ef73ccf7a9cc97fd4f499c6b6344f6b0704
4

contracts/contracts/messageService/l1/L1MessageService.sol fc0614ebfb585a198c423032da28679b2ec5213
e

contracts/contracts/messageService/l1/TransientStorageReentrancyGuardUpgradeable.
sol

1b53ca2fd5bb3fc73528dc44ef6571c4af43fa8
7

contracts/contracts/messageService/l1/v1/L1MessageManagerV1.sol 783a7d6252389c8bf56b69dbe419362991e6aad
7

contracts/contracts/messageService/l1/v1/L1MessageServiceV1.sol 0252df1c5d26f62a7e92260bde86258ed5b7108
9

contracts/contracts/messageService/l2/L2MessageManager.sol bbb518b840193744b31a2e48e80d91e9ecd65f9
1

contracts/contracts/messageService/l2/L2MessageService.sol 650739fb35afdc23d8674d7fafe81ad33d35578
8

contracts/contracts/messageService/l2/v1/L2MessageManagerV1.sol 4378c1c86af94a9fae3281378a8c1ebf20da4e4
6

contracts/contracts/messageService/l2/v1/L2MessageServiceV1.sol 9aba0872221f92aad2f9a55110a4d8a5273eaa7
0

contracts/contracts/messageService/lib/MessageHashing.sol dda45a57a2d69b7d2440268f71b235135d1424b
f

contracts/contracts/messageService/lib/RateLimiter.sol d663a362609adcf25337e26f51e89df1cba57d0
f

contracts/contracts/messageService/lib/SparseMerkleTreeVerifier.sol 03575245f18630c3ed07b3f0ffd11b55dfaa01c
7

contracts/contracts/messageService/lib/TimeLock.sol 4c841f496a82760960ee0a9edd461a75e77441a
e

contracts/contracts/messageService/lib/TransientStorageHelpers.sol aa99759259b16636999e38befd51b28aa8fb072
8

contracts/contracts/tokenBridge/BridgedToken.sol 7a4f73f0acb2a3c21f3e1bd79fdf9897b241bd2
b

contracts/contracts/tokenBridge/CustomBridgedToken.sol c6955bf390214a34a3b8a6695966a5e0aa3acfc
2

contracts/contracts/tokenBridge/TokenBridge.sol 5d7f050fc72154effaa498966751b188dffa16f
4

contracts/contracts/tokenBridge/interfaces/ITokenBridge.sol 02de301c1249e89749830ce315456c1a2cded6e
1

contracts/contracts/tokenBridge/lib/StorageFiller39.sol aaa5dc0cf4ad750b280f7da908497e59c4c8332
f

Appendix 2 - Disclosure
Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

https://consensys.io/

