@Diligence

FUZZING SCRIBBLE ABOUT

USDKG

1 Executive Summary

2 Scope

2.1 Objectives

3 Security Specification
3.1 Actors

3.2 Trust Model
4 Findings

41 transferFrom() Lacks
notBlackListed Modifier on the
Spender msg.sender 'Medium

v Fixed

4.2 Missing Validation for
Parameters in the Constructor

Medium v Fixed

4.3 Small Amount Can Ignore Fee

on Transfer (Y3

Acknowledged

4.4 Fee Basis Points Can’t Reach
the Maximum Unlike What Is
Described in the Documentation

[Minor AT

4.5 Inaccurate Comments and
Messages. [[Ili19 @ ¢ Fixed

4.6 Use .call to Transfer Native
Token Refund (I3 | ¢ Fixed

4.7 Settle Solidity Version ({13
v Fixed

4.8 Inconsistent Transaction
Execution Logic in Multisig
Contract Deviates From Gnosis
Safe and Documentation (I3

v Fixed

4.9 Unused Variable and
Functions [ITfY3 | ¢ Fixed

Appendix 1- Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

Date January 2025

1 Executive Summary

This report presents the results of our engagement with Karat USD to review USDKG.

The review was conducted over one week, from January 20, 2025 to January 24, 2025, by George Kobakhidze and Rai Yang. A
total of 10 person-days were spent.

USDKG is a gold-backed stablecoin represented as ERC20 token. The token’s constructor uses an owner and a compliance
address for administrative functions. Both owner and compliance address are meant to be governed by a Multisig contract based
on Gnosis Safe multisig contract. Certain functions are removed such as upgradability, offchain approval with signatures and
abilities to modify owners and threshold. The Karat team should note and follow updates to the Safe (previously Gnosis Safe)
multisig contracts in order to keep the USDKG multisig contracts up to date with latest ecosystem developments and any
possible issues.

2 Scope

Our review focused on the commit hash 5e2b92515976fa331291c35e78ab6cb13542b30d. The list of files in scope can be found in
the Appendix.

2.1 Objectives
Together with the Karat USD team, we identified the following priorities for our review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3 Security Specification

This section describes, from a security perspective, the expected behavior of the system under audit. It is not a substitute for
documentation. The purpose of this section is to identify specific security properties that were validated by the audit team.

3.1 Actors
The relevant actors are listed below with their respective abilities:

e USDKG deployers. The deployers create the contracts and are able to set the relevant constructor parameters, such as owner
and compliance addresses for the USDKG token.

e USDKG owners. They are able to pause the contract, manage token supply via issue and redeem , and set transfer fee
parameters.

e USDKG compliance team. The compliance team is responsible for managing the token blacklist and burning of fraudulent
tokens.

e Multisig owners. The multisig owners are responsible for signing off on transactions to be approved and subsequently
executed.

o Token users. The token users may utilize the token as they see fit, such as transfer.

3.2 Trust Model

In any system, it's important to identify what trust is expected/required between various actors. For this audit, we established the
following trust model:

e USDKG deployers. The deployers need to set the right token and multisig parameters in the constructor to ensure system
stability. For example, a threshold that is too low on a multisig may compromise the multisig’s security.

e USDKG owners. The token owners have almost complete control over the token and its supply. Via the issue and redeenm
functions, they can take away anyone’s tokens and create them for themselves. A compromised owner set may cause critical
damage to the system, so it needs to be secured with a sufficiently large multisig owner set.

e USDKG compliance team. Similarly to the owners, the compliance team has significant control over the funds. Namely, they
may stop anyone they choose from owning and interacting with the USDKG token and may even burn any one user’s USDKG
balance by adding them to the blacklist and destroying their funds via destroyBlackFunds . The USDKG compliance team also
must be behind a sufficiently large multisig set.

e Multisig owners. As the ultimate authority on what the multisig actually transacts, the multisig owners need to be vigilant and
careful with their signatures so they don’t compromise any systems dependent on the multisig. The higher the threshold and
owner count in the multisig, the less trust each multisig owner is given.

e Token users. The token users are not trusted in the system in any manner.

4 Findings

https://github.com/USDkg/USDkg/tree/5e2b92515976fa331291c35e78ab6cb13542b30d
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.io/
https://consensys.io/audits/
https://consensys.io/fuzzing/
https://consensys.io/scribble/
https://consensys.io/about/

Each issue has an assigned severity:

e ([issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

* Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

. issues are directly exploitable security vulnerabilities that need to be fixed.

41 transferFrom() Lacks notBlackListed Modifier on the Spender msg.sender wedium (Ve

Resolution

Fixed in commit 0d22c5326e21541df0c718db98004d5a475aa2ea by putting the notBlackListed modifier on msg.sender in the
transferfrom() function as well.

Description

The USDKG token has functionality to blacklist users from using it. For example, a notBlackListed modifier exists to verify that a
user does not belong to a blacklisted list:

contracts/USDKG.sol:L86-L92

modifier notBlacklListed(address sender) {
require('isBlackListed[sender], "user blacklisted");

-

This is present on functions transfer() and transferfrom() Where it is checking the msg.sender and _from addresses respectively:

contracts/USDKG.sol:L103

function transfer(address _to, uint256 _value) public whenNotPaused notBlackListed(msg.sender) returns (bool) {

contracts/USDKG.sol:L122

function transferFrom(address _from, address _to, uint256 _value) public whenNotPaused notBlackListed(_from) returns (bool) {

However, in the case of transferFrom() it would also be valuable to check blacklisting against the spender, i.e. msg.sender as well.
That is because a malicious or a compromised spender who received approval from a victim may be identified as an attacker
prior to them executing, or perhaps continuing the execution of, exploits. For example, one such compromised spender may be a
vulnerable smart contract that has the USDKG token as part of its system, like collateral or a lending asset. An attacker may
execute an exploit on such a contract that has approval on it from its victims. The exploit could move the tokens from the victims
(the _from address) to the vulnerable smart contract (the msg.sender) via transferfrom() , perform the exploit, and then move the
tokens to the attacker via transfer() . Blacklisting the attacker themselves wouldn’t be useful as they can simply spin up another
account and activate the exploit from there. However, blacklisting the vulnerable smart contract itself would prevent the
transferfrom() operation from the victim to the contract, thereby stopping the exploit at least as far as the USDKG token is
concerned. Moreover, this could be used by the compliance team of the USDKG token to blacklist known phishing contracts or
otherwise potentially sanctioned contracts as deemed appropriate by the USDKG team.

Of course, this is contingent on the USDKG compliance team knowing the vulnerable or inappropriate contracts in the first place
prior to the malicious activity taking place. This is possible today with monitoring solutions as well.

Recommendation

Apply the notBlacklisted mModifier to the spender in the transferfrom() function, i.e. msg.sender as well.

4.2 Missing Validation for Parameters in the Constructor wedsum (Vi

Resolution

Fixed in commit 0d22¢5326e21541df0c718db98004d5a475aa2ea by introducing O-checks on the owner and compliance
addresses in the constructor.

Description

The constructor function of the usbke contract does not validate that the owner and compliance address parameters are non-zero.
If either address is set to the zero address, the token contract would become unusable.

Examples

contracts/USDKG.sol:L45-L52

https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea
https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea

constructor (address _owner, address _compliance) {
owner = _owner;
compliance = _compliance;
_totalSupply = 0;
name = "USDKG";
symbol = "USDKG";
decimals = 6;

Recommendation

Add non-zero address validation in the constructor.

4.3 Small Amount Can Ignore Fee on Transfer (i acknowledged

Resolution

Acknowledged and accepted the risk by the client with the following note:

We currently have no plans to enable a fee on transfer and it’'s acceptable for us to ignore very small transfers
(fractions of a cent)

Description

The USDKG token has admin functionality to enable fees on transfer as represented by the basisPointsrate Vvariable:

contracts/USDKG.sol:L103-L104

function transfer(address _to, uint256 _value) public whenNotPaused notBlackListed(msg.sender) returns (bool) {

uint256 fee = _value * basisPointsRate / FEE_PRECISION;

contracts/USDKG.sol:L122-L128

function transferFrom(address _from, address _to, uint256 _value) public whenNotPaused notBlackListed(_from) returns (bool) {
uint256 _allowance = allowed[_from][msg.sender];

uint256 fee = _value * basisPointsRate / FEE_PRECISION;

However, since fee is a result of division by ree_preczsion in both cases, it is vulnerable to being rounded down to zero if the
numerator is less than FEe_PRECISION . FEE_PRECISION iS a constant of 1eeee :

contracts/USDKG.sol:L22

uint256 public constant FEE_PRECISION = 10000;

So, a user seeking to ignore the fee may construct transfers with sufficiently small amounts such that _value * basisPointsRate IS
less than 1eeee , making the resulting fee to be o . Thisis a common problem with fee-on-transfer tokens.

Recommendation

Consider implementing checks on minimum amounts to be transferred.

4.4 Fee Basis Points Can’t Reach the Maximum Unlike What Is Described in the Documentation gz

v Fixed

Resolution

Fixed in commit 0d22c5326e21541df0c718db98004d5a475aa2ea by setting <= instead of < on the newBasispoints check in

setParams() .

Description

The USDKG documentation describes that a fee on transfers may reach at most o.2% :

docs/USDKG.md?plain=1:L11

- Set fee parameters which, in basic terms, are equal to "0 and can reach a maximum of °0.2%"

However, the actual code implementation requires that the fee actually never reaches e.2% and is always strictly less than that:

contracts/USDKG.sol:L21

uint256 public constant MAX_BASIS_POINTS = 20;

https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea

contracts/USDKG.sol:L216-L223

function setParams(uint256 newBasisPoints) public onlyOwner {
// ensure transparency by hardcoding limit beyond which fees can never be added
require(newBasisPoints < MAX_BASIS_POINTS, "basis points should be less then MAX_BASIS_POINTS");

basisPointsRate = newBasisPoints;

emit Params(basisPointsRate);

Recommendation

Adjust code or documentation to be in sync.

4.5 Inaccurate Comments and Messages. o (Ve

Resolution

Fixed in commit 0d22c5326e21541df0c718db98004d5a475aa2ea by adjusting the relevant messages and comments.

Description

The codebase at times contains comments or messages that are inaccurate or have typos.

Examples

® keccack(... instead of keccak2s6(... :

contracts/Multisig.sol:L276-L277

function transferToken(address token, address receiver, uint256 amount) internal returns (bool transferred) {
// 8xa9059cbb - keccack("transfer(address,uint256)")
® Now owner instead of Not owner :

contracts/Multisig.sol:L457

require(owners[msg.sender] != address(@), "Now owner");

® @dev Throws if called by any account other than the owner. instead of edev Throws if called by any account other than the **compliancex* .

contracts/USDKG.sol:L62-L65

VEX:
* @dev Throws if called by any account other than the owner.
*/

modifier onlyCompliance() {

e The comment mentions Tether asis done in the original USDT contract, but the Tether entity is not applicable in the USDKG

token:

contracts/USDKG.sol:L248-L249

// getters to allow the same blacklist to be used also by other contracts (including upgraded Tether)
function getBlackListStatus(address _maker) external view returns (bool) {

Recommendation

Adjust the codebase as appropriate.

4.6 Use .call to Transfer Native Token Refund grm Ve

Resolution

Fixed in commit 0d22¢5326e21541df0c718db98004d5a475aa2ea by using .call() over .send() .

Description

Similarly to the original contracts that the multisig.sol contract is built on - the Gnosis Safe multisig contract - it would be best to
allow for a .ca11() to perform native token transfer for refunds in the handiepayment() function:

contracts/Multisig.sol:L257-L260

if (gasToken == address(0)) {
// for ETH we will only adjust the gas price to not be higher than the actual used gas price
payment = (gasUsed + baseGas) * (gasPrice < tx.gasprice ? gasPrice : tx.gasprice);
require(receiver.send(payment), "Error when paying a transaction in native currency");

https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea
https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea

As is noted in Gnosis Safe multisig implementation’s PR 601 and PR 602 from 2023, this does not introduce reentrancies but
could allow for benefits, such as integrations with smart contract wallet refund recipients.

Recommendation

Adjust the refund for native tokens to use .call() .

4.7 Settle Solidity Version grm (e

Resolution

Fixed in commit 0d22¢5326e21541df0c718db98004d5a475aa2ea by setting the Solidity version to be =e.8.24 in both
contracts.

Description

The contracts multisig.sol and usbke.sol both have a free-floating »e.s.e Solidity version:

contracts/Multisig.sol:L2

pragma solidity %0.8.0;

contracts/USDKG.sol:L2

pragma solidity %0.8.0;

Recommendation

It would be best to settle on a specific version of Solidity before deployment to better predict performance and stability of the
deployed contracts.

4.8 Inconsistent Transaction Execution Logic in Multisig Contract Deviates From Gnosis Safe and
Documentation grm (WVres

Resolution

Fixed in commit 0d22c5326e21541df0c718db98004d5a475aa2ea by allowing only owners to perform the execution of
approved transactions.

Description

The execTransaction function in the Multisig contract allows any address to execute the function, provided the transaction is
approved by the required threshold number of owners of the Multisig contract. The checkapprovals function checks if the
transaction data hash (txHash) has enough approvals, if so the execTransaction proceeds to execute the transaction. This behavior
deviates from the Gnosis Safe’s implementation which requires that only the transaction approver can execute the transaction.
This deviation may introduce some unknown risks to the system. Additionally the behavior also is inconsistent with the
documentation of the Multisig contract which states

The last signer initiates the transaction

Examples

contracts/Multisig.sol:L382-L437

https://github.com/safe-global/safe-smart-account/issues/601
https://github.com/safe-global/safe-smart-account/pull/602/files#diff-587b494ea631bb6b7adf4fc3e1a2e6a277a385ff16e1163b26e39de24e9483de
https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea
https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea
https://github.com/USDkg/USDkg/blob/main/docs/Multisig.md#the-basic-method-of-operation-of-the-multisig-is-as-follows

function execTransaction(
address to,
uint256 value,
bytes calldata data,
Operation operation,
uint256 safeTxGas,
uint256 baseGas,
uint256 gasPrice,
address gasToken,
address payable refundReceiver
) public payable virtual returns (bool success) {
bytes32 txHash;
// use scope here to limit variable lifetime and prevent ‘stack too deep’ errors

{

}

bytes memory txHashData = encodeTransactionData(
// transaction info
to,
value,
data,
operation,
safeTxGas,
// payment info
baseGas,
gasPrice,
gasToken,
refundReceiver,
// signature info
nonce
IE
// increase nonce and execute transaction.
nonce++;
txHash = keccak256(txHashData);
checkApprovals(txHash, txHashData);

// we require some gas to emit the events (at least 2500) after the execution and some to perform code until the execution (5
// we also include the 1/64 in the check that is not send along with a call to counteract potential shortings because of EIP-
require(gasleft() >= max((safeTxGas * 64) / 63, safeTxGas + 2500) + 500, "Insufficient gas");

// use scope here to limit variable lifetime and prevent ‘stack too deep’ errors

{

uint256 gasUsed = gasleft();
// if the gasPrice is 0 we assume that nearly all available gas can be used (it is always more than safeTxGas)
// we only substract 2560 (compared to the 3000 before) to ensure that the amount passed is still higher than safeTxGas
success = execute(to, value, data, operation, gasPrice == @ ? (gasleft() - 2500) : safeTxGas);
gasUsed = gasUsed - gasleft();
// if no safeTxGas and no gasPrice was set (e.g. both are @), then the internal tx is required to be successful
// this makes it possible to use ‘estimateGas without issues, as it searches for the minimum gas where the tx doesn't re
require(success || safeTxGas != @ || gasPrice != 0, "Error during call");
// we transfer the calculated tx costs to the tx.origin to avoid sending it to intermediate contracts that have made call
uint256 payment = 0;
if (gasPrice > 0) {
payment = handlePayment(gasUsed, baseGas, gasPrice, gasToken, refundReceiver);
}
if (success) emit ExecutionSuccess(txHash, payment);
else emit ExecutionFailure(txHash, payment);

contracts/Multisig.sol:L146-L171

function checkApprovals(bytes32 dataHash, bytes memory data) public view {
// load threshold to avoid multiple storage loads
uint256 _threshold = threshold;
// check that a threshold is set
require(_threshold > @, "Threshold is not set");
checkNApprovals(dataHash, data, _threshold);

VL

* % ¥ kX

*/

@notice checks whether the signature provided is valid for the provided data and hash. Reverts otherwise
@dev since the EIP-1271 does an external call, be mindful of reentrancy attacks

@param dataHash hash of the data (could be either a message hash or transaction hash)

@param data that should be signed (this is passed to an external validator contract)

@param requiredSignatures amount of required valid signatures

function checkNApprovals(bytes32 dataHash, bytes memory data, uint256 requiredSignatures) public view {
uint256 count = 0;
address currentOwner = owners[SENTINEL_OWNERS];
while (currentOwner != SENTINEL_OWNERS) {

if (approvedHashes[currentOwner][dataHash] != @) {
count++;
}
currentOwner = owners[currentOwner];
}
require(count >= requiredSignatures, "Not enough approvals");
}
Recommendation

Modify the transaction execution flow to ensure only transaction approver can execute the transaction

4.9 Unused Variable and Functions grm (v

Resolution

Fixed in commit 0d22c5326e21541df0c718db98004d5a475aa2ea by removing unused functions and variables, namely data
in checkApprovals and checkNApprovals, signedMessages mapping, and the internal signatureSplit() function.

Description

The wmuitisig contract contains several unused variables and functions, such as the data parameter in checkApprovals and
checkNApprovals function, the signedMessages variable and the signaturespiit function. These unused elements add confusion and
complexity to the code and contribute to increased gas cost.

Examples

contracts/Multisig.sol:L146-L171

function checkApprovals(bytes32 dataHash, bytes memory data) public view {
// load threshold to avoid multiple storage loads
uint256 _threshold = threshold;
// check that a threshold is set
require(_threshold > @, "Threshold is not set");
checkNApprovals(dataHash, data, _threshold);

VEZ

@notice checks whether the signature provided is valid for the provided data and hash. Reverts otherwise
@dev since the EIP-1271 does an external call, be mindful of reentrancy attacks

@param dataHash hash of the data (could be either a message hash or transaction hash)

@param data that should be signed (this is passed to an external validator contract)

@param requiredSignatures amount of required valid signatures

* ¥ % F *

*/
function checkNApprovals(bytes32 dataHash, bytes memory data, uint256 requiredSignatures) public view {
uint256 count = 0;
address currentOwner = owners[SENTINEL_OWNERS];
while (currentOwner != SENTINEL_OWNERS) {
if (approvedHashes[currentOwner][dataHash] != @) {
count++;

}

currentOwner = owners[currentOwner];

}

require(count >= requiredSignatures, "Not enough approvals");

contracts/Multisig.sol:L47

mapping(bytes32 => uint256) public signedMessages;

contracts/Multisig.sol:L309-L323

function signatureSplit(bytes memory signatures, uint256 pos) internal pure returns (uint8 v, bytes32 r, bytes32 s) {
// solhint-disable-next-line no-inline-assembly
assembly {
let signaturePos := mul(@x41, pos)
r := mload(add(signatures, add(signaturePos, 0x20)))
s := mload(add(signatures, add(signaturePos, 0x40)))
[**
* here we are loading the last 32 bytes, including 31 bytes

[

of 's'. There is no 'mload8' to do this

*

*

'byte’ is not working due to the Solidity parser, so lets
use the second best option, 'and'

*

*/
v := and(mload(add(signatures, add(signaturePos, 0x41))), 0xff)

Recommendation

Remove the unused variables and functions

Appendix 1- Files in Scope

This audit covered the following files:

File SHA-1 hash
contracts/Multisig.sol 63a2b1443c5c36d56167af262925a2146F62b2f6
contracts/USDKG.sol e14ee08519be2d4622f4c704bc379a054137157

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or

https://github.com/USDkg/USDkg/commit/0d22c5326e21541df0c718db98004d5a475aa2ea

proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY c consensys

https://consensys.io/

