@Diligence

FUZZING SCRIBBLE ABOUT

Metamask - EIP-7715 Permissions Snap

1 Executive Summary

2 Scope

2.1 Objectives

3 Snap Configuration
Overview

3.1 EIP-7715 Permissions Kernel
Snap

3.2 Gator Permissions Snap

4 General Findings

4.1 Remove Debug/Development
Origins for Productions Builds

Medium v Fixed

4.2 Potential Sensitive
Information Disclosure Through

Error Logging (I3

v Addressed

5 Findings: Kernel

5.1 Kernel - Prototype Pollution via
Method Handler Lookup

v Fixed

5.2 Kernel - Superfluous
Permissions in Manifest Medium

v Fixed

5.3 Kernel - Unused Dependency

‘Viem’ ({13 | ¢ Fixed

5.4 Kernel - onRpcRequest
Misleading Function
Documentation [| ¢ Fixed

5.5 Kernel - Recommendation:
Enforce Strict Runtime Type &

Input Validation Early | v Fixed

5.6 Kernel - Inefficient Array
Concatenation | ¢ Fixed

6 Findings: Gator

6.1 Gator - Currency Mismatch for
Non-English Users

v Fixed

6.2 Gator - Superfluous
Permissions in Manifest Medium

v Fixed

6.3 Gator - Missing Runtime
Verification for APl Responses

Medium v Fixed

6.4 Gator - Missing Runtime
Schema Verification for Profile
Sync Store/Retrieve 'Medium

v Fixed

6.5 Gator - Inconsistent Atomicity
Expectation in Batch Permission

Grants (I3 | v Fixed

6.6 Gator - Lifecycle Hooks
Permission Used Primarily for

Development Features | v Fixed

6.7 Gator - Misleading Debug
Message | ¢ Fixed

6.8 Gator - Recommendation:

Tokenlcon SVG Runtime Type
Enforcement | ¢ Fixed

7 Document Change Log
Appendix 1 - Files in Scope

Appendix 2 - Disclosure
A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

Date August 2025

Martin Ortner, Pedro
Santos

Auditors

1 Executive Summary

This report presents the results of our engagement with MetaMask to review the Gator 7715 Permissions & Kernel Snap.

The review was conducted over 3 calendar weeks, from Aug 11, 2025 to Aug 29, 2025, with a total effort of 4.5 person-weeks,
with one reviewer for 3 person-weeks and another with 1.5 person-weeks.

The system enables users to grant time-bound, caveat-restricted permissions for various blockchain operations including ERC-20
token transfers, native token operations, and streaming payments. Through its integration with DeleGator smart accounts and the
delegation toolkit, it provides a foundation for automated, user-controlled blockchain interactions while maintaining security
through comprehensive validation and user consent mechanisms.

The MetaMask Gator Permissions Snap is an EIP-7715 permissions management system that enables granular control over
blockchain permissions through MetaMask’s Snap framework. This dual-snap architecture consists of the Gator Permissions Snap
and the Permissions Kernel Snap, working together to implement EIP-7715 for delegated permissions and smart account
interactions.

The Permission Kernel Snap implements a registry intended to support multiple 7715-compliant adapters in the future. At
present, however, it is hardcoded to the Gator Permission Snap Adapter. While this reduces the kernel’s direct attack surface, it
simultaneously increases the system’s overall exposure, since snap-to-snap communication introduces additional complexity and
requires safeguards such as whitelisting, a broker model, and forwarding of the original origin.

The Gator Permission Snap is configured to allow communication from the Kernel Snap (the “router”) and MetaMask internal
wallet operations only. The Kernel as the request broker can ask for all offered permissions and request specific permissions
requested by a DApp. The adapter also offers a getter to return all issued permissions that can only be accessed by MetaMask.

Update: October 28, 2025 - Mitigations Review

Between October 22, 2025 and October 28, 2025, we conducted a review of the client’s remediation measures implemented in
commit 476e653 of the MetaMask/snap-7715-permissions repository.

Update: October 30, 2025 - Additional Mitigations Review

Removed viem dependency with 6da514a.

2 Scope

This review focused on the following repository and code revision:
e MetaMask/snap-7715-permissions (2917e66247c44bafefc51514eb2eee5339b34455)
Third party dependencies packages are out of scope for this review.

The detailed list of files in scope can be found in the Appendix.

2.1 Objectives
Together with client, we identified the following priorities for this review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. ldentify vulnerabilities particular to the MetaMask Snaps SDK integration in coherence with the MetaMask Snap Security
Guidelines and Threat Model describing a Snap as an extension of the MetaMask Wallet Trust Module.

3 Snap Configuration Overview

As part of the assessment, the following key aspects of the Snap’s configuration were identified:

3.1 EIP-7715 Permissions Kernel Snap

e The Snap serves as a permissions kernel implementing EIP-7715 for managing execution permissions in the MetaMask
ecosystem.

e |t acts as an intermediary that receives permission requests from DApps and routes them to appropriate permission providers
(currently the Gator Permissions Provider Snap).

e The Snap is designed to support multiple permission providers in the future but currently integrates specifically with the

GATOR_PERMISSIONS_PROVIDER_SNAP_ID .

e The Snap is state-less and only serves hard-coded adapters from the registry.

https://metamask.io/en-GB/developer/delegation-toolkit
https://eips.ethereum.org/EIPS/eip-7715
https://eips.ethereum.org/EIPS/eip-7715
https://github.com/MetaMask/snap-7715-permissions/tree/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/tree/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/commit/6da514a03686142f96d81fa694c090dfcf5abee4
https://github.com/MetaMask/snap-7715-permissions/tree/2917e66247c44bafefc51514eb2eee5339b34455
https://github.com/MetaMask/snap-7715-permissions/tree/2917e66247c44bafefc51514eb2eee5339b34455
https://docs.metamask.io/snaps
https://docs.metamask.io/snaps/learn/best-practices/security-guidelines/
https://metamask.io/news/developers/snaps-security-essentials-a-security-guide-for-metamask-snaps-development/
https://eips.ethereum.org/EIPS/eip-7715
https://consensys.io/
https://consensys.io/audits/
https://consensys.io/fuzzing/
https://consensys.io/scribble/
https://consensys.io/about/

A.2.3 Timeliness of Content Internal Architecture:

» Registry Manager: Manages the permission offer registry and handles finding relevant permissions to grant from available
offers.

e RPC Handler: Processes incoming RPC requests and orchestrates the permission granting workflow.
RPC Methods:

* wallet_requestExecutionPermissions : The primary method exposed to DApps for requesting execution permissions. This method:
o Parses and validates the permission request

o Builds a permission offers registry from the Gator permissions provider
o Finds relevant permissions to grant by filtering against registered offers
o Invokes the permission provider snap to grant attenuated permissions

o Returns the granted permissions to the requesting DApp
Snap Permissions:

* snap_dialog : Displays dialogs in the MetaMask Ul !

® endowment:rpc :

o dapps: true - Allows communication with websites/DApps

© snaps: true - Enables communication with other snaps !
DApp Connectivity and Permissions:

e Connected DApp communicate with the Snap via RPC calls. Any connected DApp can communicate with the Snap. No
restrictions or programmatic whitelists.

e Development origins are not explicitly excluded from initial-connections for production builds !

e The snap allows DApp-to-Snap and Snap-to-Snap. It is unclear if the latter is actually needed !
State Management:

e No state information is stored or accessed.
Dependencies:

e oemetamask/snaps-sdk:8.1.0 (marked as potential dev dependency)

e viem:2.31.7 !

Origin Permissions

"initialConnections”: {
"local:http://localhost:8082": {},
"npm:@metamask/gator-permissions-snap": {}

}

"initialPermissions"”: {

“snap_dialog": {},
"endowment:rpc": {
"dapps": true,
"snaps": true

e Development origin whitelisted at initialConnections !

e Trusting gator-permissions-snap Via initialConnections Might not be needed !

Details

----%<---- raw permissions

: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
snap_dialog {}
endowment:rpc { dapps: true, snaps: true }

---->%---- raw permissions
#@ [snap_dialog]
~ - shap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.

! - this method renders Markdown! check for ctrlchar/markdown/injection
src/index.ts
#@ [endowment:rpc]
I - endowment:rpc.dapps - snap can communicate with websites/dapps; check origin for internal api calls!
! - endowment:rpc.snaps - snhap can communicate with other snaps; check origin for internal api calls!
src/index.ts
4 - Package Dependencies:
- @metamask/snaps-sdk:8.1.0 (4 looks like devDependency =)
- viem:2.31.7
[# == Metrics ==
316 (lines of code)

3.2 Gator Permissions Snap

e The Snap serves as a permissions provider implementing EIP-7715 for managing token spending permissions in the MetaMask
ecosystem.

e |t acts as the core permissions provider that receives permission requests from the EIP-7715 Permissions Kernel Snap and
manages the full lifecycle of permission granting, validation, and storage.

e The Snap implements four types of token permissions: ERC-20 Token Stream, ERC-20 Token Periodic, Native Token Stream,
and Native Token Periodic.

e The Snap maintains persistent state of granted permissions and provides a management interface for users to view their
active permissions.

This is currently the only adapter that Kernel interfaces with.

Internal Architecture:

https://eips.ethereum.org/EIPS/eip-7715

e Permission Handler Factory: Creates specialized handlers for different permission types with validation rules and Ul content
generation.

e Permission Request Lifecycle Orchestrator: Manages the complete permission request workflow from validation through
user confirmation to delegation creation.

e Confirmation Dialog System: Handles user consent dialogs with dynamic content based on permission type and context.
e Account Controller: Manages EOA account operations and EIP-712 delegation signing for permission enforcement.
e Profile Sync Manager: Persists granted permissions across browser sessions using MetaMask’s profile sync functionality.

e Token Metadata & Pricing Services: Fetches external token information and real-time pricing data for Ul display.
RPC Methods:

e grantPermission : The primary method for processing permission requests. This method:
Validates incoming permission requests against defined schemas

(o}

(e}

Creates appropriate permission handlers based on request type

(0]

Orchestrates user confirmation dialogs showing origin, token details, and permission scope

(0]

Creates EIP-712 delegations for approved permissions

(0]

Stores granted permissions for future reference
® getPermission0ffers : Returns available permission types that can be granted

* getGrantedPermissions : Retrieves all previously granted permissions for management purposes
Snap Permissions:

* endowment:rpc : Enables communication with other snaps (specifically the EIP-7715 Permissions Kernel) !
* snap_manageState : Stores granted permissions and user preferences (up to 100MB isolated storage)

® endowment:ethereum-provider : Accesses Ethereum API for account operations and delegation signing !

® endowment :network-access : Makes HTTP requests to external APIs for token metadata and pricing !

® snap_dialog : Displays permission confirmation and management dialogs !

* endowment:lifecycle-hooks : Handles installation and homepage events

e snap_getPreferences : Accesses user preferences for currency and locale settings

* endowment :page-home : Provides homepage interface for permission management
DApp Connectivity and Permissions:

e The Snap does not directly communicate with DApps (dapps: false in RPC endowment).
e All DApp interactions are mediated through the EIP-7715 Permissions Kernel Snap for security isolation.

e Development origins are not explicitly restricted in production builds (manifest), however, they are excluded from the
programmatic permission check !

e The snap allows Snap-to-Snap communication. npm:emetamask/permissions-kernel-snap is trusted by default.
State Management:

e Persistent storage of granted permissions with origin tracking and expiration management.
e Token metadata caching for improved performance and reduced external API calls.

e User preference synchronization across MetaMask installations via profile sync.
Dependencies:

® oemetamask/snaps-sdk:8.1.8 (Core Snaps functionality)

® ometamask/delegation-core:8.2.0-rc.1 (EIP-712 delegation creation)

e oemetamask/utils:11.4.2 (Utility functions for CAIP parsing and validation)
e viem:2.31.7 (Ethereum interactions) .!. unused

* 20d:3.25.76 (Runtime validation and type safety)

Origin Permissions

"initialConnections”: {
"local:http://localhost:8681": {},
"npm:@metamask/permissions-kernel-snap": {}

b

"initialPermissions": {
"endowment:rpc": {

"dapps"”: false,

"snaps": true
’
"snap_manageState": {},
"endowment :ethereum-provider": {},
"endowment :network-access": {},
"snap_getEntropy": {},
"snap_dialog": {},
"endowment:lifecycle-hooks": {},
"snap_getPreferences": {},
"endowment :page-home": {}

e Development origin whitelisted at initialConnections !
e Network access enabled for external API calls to token metadata and pricing services !

e Ethereum provider access for delegation signing and account operations !

Details

----%<---- raw permissions
: https://docs.metamask.io/snaps/reference/rpc-api/#wallet_requestsnaps
endowment:rpc { dapps: false, snaps: true }
snap_manageState {}
endowment :ethereum-provider {}
endowment :network-access {}
snap_getEntropy {}
snap_dialog {}
endowment :1lifecycle-hooks {}
snap_getPreferences {}
endowment :page-home {}
---->%---- raw permissions
#a [endowment:rpc]
! - endowment:rpc.snaps - shap can communicate with other snaps; check origin for internal api calls!
src/index.ts
#0 [snap_manageState]
= - snap_manageState - snap can store up to 18@mb (isolated)
src/stateManagement.ts
#0 [endowment:ethereum-provider]
& - endowment:ethereum-provider - snap can access ethereum API
! - check if the **snap code** (not site) actually accesses the global 'ethereum' object
see https://docs.metamask.io/snaps/learn/about-snaps/apis/#snap-requests
src/clients/priceApiClient.ts
#o [endowment :network-access]
- endowment :network-access - snap can access internet
! - this method may leak information to external api
#o [snap_getEntropy]
- snap_getEntropy - Gets a deterministic 256-bit entropy value, specific to the snap and the user's account. You can use this entropy to generat
A - superfluous permission: no reference to 'snap_getEntropy'!
#a [snap_dialog]
-~ - snap_dialog - Displays a dialog in the MetaMask UI. There are three types of dialogs with different parameters and return types.
! - this method renders Markdown! check for ctrlchar/markdown/injection
src/homepage/index.tsx
src/core/confirmation.tsx

#o [endowment:lifecycle-hooks]
& - endowment:lifecycle-hooks - unknown permission requested
#a [snap_getPreferences]
& - snap_getPreferences - unknown permission requested
[endowment :page-home]
& - endowment:page-home - unknown permission requested
4 - Package Dependencies:
- @metamask/abi-utils:3.0.0 (& looks like devDependency ==!)
- @metamask/delegation-core:0.2.8-rc.1 (4 looks like devDependency ==')
- O@metamask/delegation-toolkit:0.10.2 (4 looks like devDependency =)
- @metamask/profile-sync-controller:21.0.90 (& looks like devDependency #=!)
- @metamask/snaps-sdk:8.1.0 (& looks like devDependency ==!)
- @metamask/utils:11.4.2 (4 looks like devDependency ==')
- viem:2.31.7
- zod:3.25.76

[# == Metrics ==

6926 (lines of code)

4 General Findings

Each issue has an assigned severity:

. issues are directly exploitable security vulnerabilities that need to be fixed.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

e Medium iSsues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

e [issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Issues without a severity are general recommendations or optional improvements. They are not related to security or
correctness and may be addressed at the discretion of the maintainer.

4.1 Remove Debug/Development Origins for Productions Builds wesum [¥Fies

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by programmatically excluding development hosts from production
builds. endowment : 1ifecycle-hooks IS NOW onIy available in 1oca1 dev builds.

Description

It is important to verify that debug/development artefacts and settings are not active in production builds. The MetaMask KeyRing
API Security Documentation emphasises the importance of removing all debug code from production snaps.

Examples
e development artefacts (localhost) in manifest

packages/gator-permissions-snap/snap.manifest.json:L20-L23

"initialConnections": {
"local:http://localhost:8681": {},
"npm:@metamask/permissions-kernel-snap": {}

}

packages/permissions-kernel-snap/snap.manifest.json:L20-L22

"initialConnections": {
"local:http://localhost:8682": {},
"npm:@metamask/gator-permissions-snap": {}

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://docs.metamask.io/snaps/features/custom-evm-accounts/security/#remove-all-debug-code-from-your-production-snap

Recommendation

Ensure that debug/development configuration and artefacts are not included in production builds. This includes adding
dev/debug endpoint permissions only if the environment suggests it's a debug build. The build scripts should check for the
corresponding debug parameterization. This will prevent inadvertent inclusion of debug code in production builds.

4.2 Potential Sensitive Information Disclosure Through Error Logging o (Vadaress

Resolution

Most instances addressed in MetaMask/snap-7715-permissions@ 476e653 by not emitting the error object with the logger.
The client provided additional details:

Summary of Finding: Detailed logging of errors and requests was observed, posing a risk of sensitive data
exposure.

Resolution: Raw logging was replaced with sanitized logging, and all logs were disabled in production builds.
Implementation: PR: MetaMask/snap-7715-permissions#161.

Verification: Production logs were verified to exclude sensitive data (e.g., stack traces, full payloads).

Some instances are left with the logger emitting the error object from a tryCatch statement (mostly 1ogger.error Or
logger.warn invocations). For example in userEventDispatcher , AccountApiClient , HOwever, by default, the loglevel is set to
disabled.

Description

Both the kernel and gator snaps log complete error objects and unvalidated request data. This might expose internal and
sensitive information like stack traces, APl endpoints, and user input to browser logs.

While local attack vectors may not be included in MetaMask’s threat model, it is considered a good practice to avoid exposure of
potential sensitive information.

Example

packages/permissions-kernel-snap/src/index.ts:L39-L48

export const onRpcRequest: OnRpcRequestHandler = async ({
origin,
request,
}) => |
logger.info(
"Custom request (origin="${origin}"):",
JSON.stringify(request, undefined, 2),
IE

const handler = boundRpcHandlers|[request.method];

packages/permissions-kernel-snap/src/registryManager.ts:L70-L122

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/161

async function buildPermissionOffersRegistry(
snapld: string,

) : Promise<PermissionOfferRegistry> {
let ephemeralPermissionOfferRegistry: PermissionOfferRegistry = {};
try {

try {
logger.debug("Querying snap S${snapId} for permission offers...’);

const response = await snapsProvider.request({
method: 'wallet_invokeSnap',
params: {
snapld,
request: {
method: ExternalMethod.PermissionProviderGetPermissionOffers,

if (response) {
const parsedOffers = parsePermissionOffersParam(response);
const uniqueOffersToStore: RegisteredPermissionOffers =
parsedOffers.map((offer) => {
return {
hostId: snapld,
type: offer.type,
proposedName: offer.proposedName,
I
1)

ephemeralPermissionOfferRegistry = {
...ephemeralPermissionOfferRegistry,
[snapId]: uniqueOffersToStore,

ti

logger .debug(
‘Snap S${snapId} supports S${ExternalMethod.PermissionProviderGetPermissionOffers}, adding to registry...",
IE
}
} catch (error) {
logger.error(
{
snapld,
error,
}.

*Snap S${snapId} does not support S{ExternalMethod.PermissionProviderGetPermissionOffers}, or returned an invalid respo

)

return ephemeralPermissionOfferRegistry;

} catch (error) {
logger.error('Error building permission offer registry:', error);
return ephemeralPermissionOfferRegistry;

packages/gator-permissions-snap/src/index.ts:L189-L196

export const onRpcRequest: OnRpcRequestHandler = async ({
origin,
request,
}) => A
logger.debug(
"RPC request (origin="${origin}"):",
JSON.stringify(request, undefined, 2),
IE

packages/gator-permissions-snap/src/services/tokenPricesService.ts:L72-L107

async getCryptoToFiatConversion(
tokenCaip19Type: CaipAssetType,
balance: Hex,
decimals: number,
) : Promise<string> {
try {
logger.debug('TokenPricesService:getCryptoToFiatConversion()"');
const preferences = await this.#getPreferences();

// Value in fiat=(Amount in crypto)x(Spot price)

const tokenSpotPrice = await this.#priceApiClient.getSpotPrice(
tokenCaip19Type,
this.#safeParsePreferences(preferences),

IE

const formattedBalance = Number (
formatUnits({ value: BigInt(balance), decimals }),

IE

const valueInFiat = formattedBalance * tokenSpotPrice;

const humanReadableValue = formatAsCurrency(preferences, valueInFiat);
logger .debug(
'TokenPricesService:formatAsCurrency() - formatted balance to currency’,
humanReadableValue,

);

return humanReadableValue;
} catch (error) {
logger.error(
'TokenPricesService:getCryptoToFiatConversion() - failed to fetch token spot price’,
error,

)
// TODO: Return a more user-friendly error message so failed calls to the Price API are handled gracefully

// and do not make the entire permission request fail. We can use cached prices as a fallback to prevent this issue message i
return 'S<-->':

Please notice similar patterns found in more locations across codebase like: accountApiclient.ts , priceApiClient.ts ,

tokenMetadataService.ts , blockchainMetadataClient.ts , accountController.ts, ...

Recommendation

Given users will likely not act or even notice console logs, consider disabling logging for production builds. Additionally, and in
case you don’t want or can’t disable logs for prod, implement an error sanitization utility to remove any sensitive information from
logs and use it to replace the raw ones.

5 Findings: Kernel

5.1 Kernel - Prototype Pollution via Method Handler Lookup =m e

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by checking object.prototype.hasownProperty ON the request struct before
accessing it. In eator this is safeguarded by a check for ismethodallowedrororigin . The client provided additional details:

Summary of Finding: request.method lacked validation, enabling prototype pollution.

Resolution: We introduced explicit checks to ensure methods exist directly on the handler object (not on its
prototype). Additionally, in gator-permission-snap, we enforce isMethodAllowedForOrigin, which restricts
invocation so that only the kernel can call specific methods. This design prevents prototype pollution attacks in
that context.

Implementation: PR: MetaMask/snap-7715-permissions#147.

Verification: Attempting to invoke prototype methods correctly fails.

Reviewed call flow in Gator Snap to confirm isMethodAllowedForOrigin ensures untrusted origins cannot bypass
validation.

Description

The RPC method handler lookup is vulnerable to prototype pollution attacks. When request.method contains prototype property
names like tosString , valueOf , constructor , OF hasOwnProperty , the code accesses inherited methods from object.prototype instead of
returning undefined . This allows attackers to invoke unintended functions and potentially extract sensitive information or cause
unexpected behavior.

Example

® boundRpcHandlers inherits functions from object.prototype

e by accessing boundRpcHandlers|request.method] Without whitelisting method names, the caller can call arbitrary inherited
functions

packages/permissions-kernel-snap/src/index.ts:L29-L52

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/147

VEZS

Handle incoming JSON-RPC requests, sent through ‘wallet_invokeSnap .
@param args - The request handler args as object.

invoked the snap.
@param args.request - A validated JSON-RPC request object.
@returns The result of ‘snap_dialog .
@throws If the request method is not valid for this snap.
*/
export const onRpcRequest: OnRpcRequestHandler = async ({
origin,
request,
1) => A
logger.info(
‘Custom request (origin="${origin}"):",
JSON.stringify(request, undefined, 2),
I¥

*
*
*
*# @param args.origin - The origin of the request, e.g., the website that
*
*
*
*

const handler = boundRpcHandlers|[request.method];

if (!handler) {
throw new Error(Method S${request.method} not found.);
}

packages/permissions-kernel-snap/src/index.ts:L12-L27

// set up dependencies

const rpcHandler = createRpcHandler({
permissionOfferRegistryManager: createPermissionOfferRegistryManager(snap),
snapsProvider: snap,

1)

// configure RPC methods bindings
const boundRpcHandlers: {
[RpcMethod: string]: (options: {
siteOrigin: string;
params?: JsonRpcParams;
}) => Promise<Json>;
b= A
[RpcMethod.WalletRequestExecutionPermissions]:
rpcHandler.requestExecutionPermissions.bind(rpcHandler),

s

Recommendation

Use object.prototype.hasownProperty.call() Or Map data structure instead of object property access, or implement explicit method
validation using object.hasown() to prevent prototype chain access.

5.2 Kernel - Superfluous Permissions in Manifest wedum [VFixea

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by removing initialConnections altogether, changing
endowment : rpc.snaps = false , and removing the unused snap_dialog .The client provided additional details:

Summary of Finding: Unnecessary permissions (snap_dialog, extra connections) were declared.
Resolution: Remove gatorSnap from the kernel snap’s initialConnections, set the snap field to false for the
endowment:rpc permission, and remove the snap_dialog permission from the kernel snap.
Implementation: PRs:

MetaMask/snap-7715-permissions#167

MetaMask/snap-7715-permissions#153

Verification: The manifest was reviewed to confirm adherence to the principle of least privilege.

Description

The permissions kernel snap declares multiple unnecessary permissions in its manifest that violate the principle of least privilege
and unnecessarily expand the attack surface. The manifest includes three categories of superfluous permissions:

e The initialConnections Section includes npm:emetamask/gator-permissions-snap despite the kernel snap never initiating
communication with the gator snap. The kernel only processes responses when invoking other snaps.

e The endowment:rpc permission grants "snaps": true access, but no other snaps initiate communication with the kernel snap. The
kernel only handles request-response communications in a unidirectional flow (DApp — Kernel — Gator).

e The snap_dialog permission is declared but never used in the codebase. All dialog operations are handled by the gator
permissions snap.

Example

packages/permissions-kernel-snap/snap.manifest.json:L20-L30

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/167
https://github.com/MetaMask/snap-7715-permissions/pull/153

"initialConnections": {
"local:http://localhost:80682": {},
“npm:@metamask/gator-permissions-snap": {}

o
"initialPermissions": {
"snap_dialog": {},
"endowment:rpc": {
"dapps": true,

"snaps": true
}
iF

Recommendation

Remove unused npm:@metamask/gator-permissions-snap frOmM initialConnections , S€t "snaps": false in the RPC endowment configuration
and remove snap_dialog tO eliminate unnecessary permissions and reduce the potential attack surface.

Also see: Remove Development Artefacts issue 4.1.

5.3 Kernel - Unused Dependency ‘Viem' grm (Vs

Resolution

Update Oct 30, 2025: The client has removed the import with MetaMask/snap-7715-permissions@ 6das14a .

Still present in MetaMask/snap-7715-permissions@ 476e653 . 7715-permissions-shared , Which is used by both snaps, imports vienm
but seems to be unused. viem is also imported by site but site references itin code.

The client originally provided the following additional details:

Summary of Finding: The viem dependency was found to be unused.

Resolution: The unused dependency was removed.

Implementation: PR: MetaMask/snap-7715-permissions#154.

Verification: The dependency no longer appears in package.json, and builds successfully complete.

Description

The project declares vieme2.31.7 as a dependency but never imports or utilizes this package anywhere in the codebase. This
creates unnecessary supply chain exposure and violates security best practices for dependency management.

Example

packages/permissions-kernel-snap/package.json:L49-L52

"dependencies": {
"@metamask/snaps-sdk": "8.1.0",
"viem": "2.31.7"

No import statements found in any TypeScript files (src/#*/%.ts) or test configurations.

Recommendation

Remove the unused viem dependency from package.json.

5.4 Kernel - onRpcRequest Misleading Function Documentation g (Ve

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by providing an accurate ereturns documentation. The client provided
additional details:

Resolution: JSDoc was updated to accurately describe the return type.
Implementation: PR: MetaMask/snap-7715-permissions#160
Verification: Documentation was reviewed, revealing no discrepancies.

Description

The onrpcrequest function documentation contains incorrect information about the return value. The JSDoc comment states that
the function “The result of snap_dialog ” While the actual implementation returns the result of the 7715 permissions adapter

response from boundRpcHandlers.requestExecutionPermissions() .

Example

packages/permissions-kernel-snap/src/index.ts:L29-L38

https://github.com/MetaMask/snap-7715-permissions/commit/6da514a03686142f96d81fa694c090dfcf5abee4
https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/154
https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/160

Recommendation

Update the JSDoc documentation to accurately reflect that the function returns the 7715 permissions adapter response, not a
snap dialog result.

5.5 Kernel - Recommendation: Enforce Strict Runtime Type & Input Validation Early v

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by enforcing input validation on RPC requests early. The client provided
additional details:

Resolution: Zod schemas were introduced for validating incoming RPC requests prior to processing.
Implementation: PR: MetaMask/snap-7715-permissions#160.
Verification: Malformed requests are now rejected at an early stage.

Description

The onrpcrequest handler does not validate incoming requests before processing them. The JSDoc mentions it expects a
“validated JSON-RPC request object”, but the code should verify if that’s actually happening, rather than directly accessing
request.method and request.params Without any checks.

The missing validation could enable prototype pollution attacks (see issue 5.1) since it does not check request.method in any way
before using it as an object key.

Please note request.params gets validated later, but by then it might be too late to prevent method lookup issues.
Example

packages/permissions-kernel-snap/src/index.ts:L29-L60

export const onRpcRequest: OnRpcRequestHandler = async ({
origin,
request,
}) => A
logger.info(
‘Custom request (origin="S${origin}"):",
JSON.stringify(request, undefined, 2),
ik
const handler = boundRpcHandlers|[request.method];
if (!handler) {
throw new Error(Method S${request.method} not found.);
}
const result = await handler({
siteOrigin: origin,
params: request.params as JsonRpcParams,

1)

return result;

The code assumes request.method is @ valid string and request.parans conforms to JsonrpcParams Without any runtime verification.
Recommendation

Implement comprehensive Zod schema validation for all incoming RPC requests before processing.

5.6 Kernel - Inefficient Array Concatenation (Vi

Resolution

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/160

Fixed in MetaMask/snap-7715-permissions@ 476e653 by using array.flat() . The client provided additional details:

Resolution: The reduce method was replaced with Array.prototype.flat().
Implementation: PR: MetaMask/snap-7715-permissions#159.
Verification: Code review confirmed array operations are now efficient and safe.

Description

The getregisteredpermissionoffers function uses an inefficient O(n?) array concatenation pattern. It is using spread operators inside a
reduce, which recreates the entire array on every iteration. While the current registry is hardcoded to the gator snap, and even
considering numerous permissions offers, the risk of causing significant performance degradation or denial of service is reduced,
however, it still should be addressed.

Example

packages/permissions-kernel-snap/src/registryManager.ts:L125-L142

function getRegisteredPermissionOffers(
permissionOfferRegistry: PermissionOfferRegistry,
) : RegisteredPermissionOffers {
if (Object.keys(permissionOfferRegistry).length === 0) {
return [];

}

return Object.values(permissionOfferRegistry).reduce(
(acc, offers) => [...acc, ...offers],

[1,
)
}
Recommendation

Replace the inefficient reduce pattern with array.prototype.filat() which operates in O(n) time complexity, or use
Array.prototype.concat() for better performance and reduced memory allocation.

6 Findings: Gator

6.1 Gator - Currency Mismatch for Non-English Users gmm (v

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by updating the logic to invoke the Price APl with the user’s preferred
currency and updating the Ul element when falling back to USD. The client provided additional details:

Resolution: Logic was updated to invoke the Price APl with the user’s preferred currency, incorporating a fallback
mechanism.

Implementation: PR: MetaMask/snap-7715-permissions#152

Verification: Testing across EN, FR, and DE locales confirmed correct currency handling.

Description

A currency mismatch exists in the Tokenpricesservice implementation that causes non-English users to receive USD price data
while displaying it with their local currency formatting. This can potentially create a financial misinformation during permission
grant decisions.

The issue occurs in the #safeparsepreferences() method which forces USD currency for all non-English locales when fetching price
data, while the formatascurrency() function uses the user’s original currency preference for display formatting. This mismatch
results in users seeing USD price values formatted with their local currency symbols (EUR, GBP, etc.).

Examples

packages/gator-permissions-snap/src/utils/locale.ts:L11-L14

export const FALLBACK_PREFERENCE: Preferences = {
locale: 'en',
currency: 'USD',

s

packages/gator-permissions-snap/src/services/tokenPricesService.ts:L35-L41

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/159
https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/152

#safeParsePreferences(preferences: Preferences): VsCurrencyParam {
const { currency, locale } = preferences;
return locale === ‘'en’
? (currency.toLowerCase() as VsCurrencyParam)
: (FALLBACK_PREFERENCE.currency.tolLowerCase() as VsCurrencyParam);

packages/gator-permissions-snap/src/services/tokenPricesService.ts:L79-L96

const preferences = await this.#getPreferences();

const tokenSpotPrice = await this.#priceApiClient.getSpotPrice(
tokenCaip19Type,
this.#safeParsePreferences(preferences),

IE
const formattedBalance = Number(
formatUnits({ value: BigInt(balance), decimals }),

)

const valueInFiat = formattedBalance * tokenSpotPrice;

const humanReadableValue = formatAsCurrency(preferences, valueInFiat);
logger .debug(
'TokenPricesService:formatAsCurrency() - formatted balance to currency’,
humanReadableValue,

);
Recommendation

Ensure the Price API is called with the user’s preferred currency when supported, add validation to ensure Price APl supports it,
and/or add currency conversion logic as a fallback.

Additionally, if the preferred currency is unavailable, it should be clear to the user that the price shown is using a different
currency to avoid misinformation.

6.2 Gator - Superfluous Permissions in Manifest wedium [VEkd

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by removing snap_getentropy . The client provided additional details:

Resolution: The unused snap_getEntropy permission was removed.
Implementation: PR: MetaMask/snap-7715-permissions#153.
Verification: The manifest was confirmed to align with the principle of least privilege.

Description

The snap manifest declares the snap_getEntropy permission in its initialPermissions Section, but analysis of the codebase reveals no
usage of entropy generation functionality. The snap_getEntropy permission grants access to cryptographically secure random
number generation, which is a sensitive capability that should only be requested when actually needed.

This permission allows the snap to:

e Generate cryptographically secure random values
e Access entropy for cryptographic operations

e Potentially use randomness for security-critical functions

Since the gator-permissions-snap does not utilize entropy generation in its implementation, this permission violates the principle
of least privilege by granting unnecessary capabilities that could be exploited if the snap were compromised.

Example

packages/gator-permissions-snap/snap.manifest.json:L32

"snap_getEntropy": {},

Recommendation

Remove the unused snap_getentropy permission from the initialPermissions configuration to eliminate unnecessary capabilities and
reduce the potential attack surface.

Also see: Remove Development Artefacts issue 4.1.

6.3 Gator - Missing Runtime Verification for APl Responses wiedium [V

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by enforcing manual and zod runtime validation via
makeValidatedRequestWithretry for APl responses. The client provided additional details:

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/153
https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed

Resolution: Schema validation using Zod was added for API responses, and request timeouts were enforced.
Implementation: PR: MetaMask/snap-7715-permissions#158
Verification: Invalid or malformed responses are now safely rejected.

Description

The AccountApiClient.getTokenBalanceAndMetadata() Method uses a compile time type assertion

(await response.json()) as TokenBalanceResponse Without validating the actual structure or content of every field in the response at
runtime, trusting external APl data blindly. Additionally, the method lacks timeout controls, response size limits, and field-level
validation.

For example, fields like iconurl, symbol , and decimals are returned to the caller without sanitization. Additionally, there is no
protection against hanging requests that could cause disruptions in MetaMask user experience.

Examples

getTokenBalanceAndMetadata

e decimals: untrusted numeric value

e symbol: untrusted string

e iconUrl: untrusted URL (pot. extension-csrf, tracking) - later used to fetch icon and converted to b64-data-uri
e account: is verified against internal accounts but not ensured to be an array at runtime.

e type: is manually checked

e balance: implicitly via Bigint conversion

packages/gator-permissions-snap/src/clients/accountApiClient.ts:L102-L119

const response = await this.#fetch(
*S{this.#baseUrl}/tokens/S${tokenAddress}?accountAddresses=8{account}&chainId=${chainId} ",
i

if (!'response.ok) {
const message = 'HTTP error. Failed to fetch token balance for account(${account}) and token(S${tokenAddress}) on chain(${cha
logger.error(message) ;

throw new Error(message);

}

const { accounts, type, iconUrl, symbol, decimals } =
(await response.json()) as TokenBalanceResponse;

const accountLowercase = account.tolLowerCase();
const accountData = accounts.find(
(acc) => acc.accountAddress.tolLowerCase() === accountLowercase,

);

getSpotPrice - missing runtime type enforcement

packages/gator-permissions-snap/src/clients/priceApiClient.ts:L40-L76

const response = await this.#fetch(
“§{
this.#baseUrl
}/v3/spot-prices?includeMarketData=false&vsCurrency=${vsCurrency}&assetIds=${caipAssetType}",

)

if (!response.ok) {
logger.error(
"HTTP error! Failed to fetch spot price for caipAssetType(S{caipAssetType}) and vsCurrency(S${vsCurrency}): S{response.stat
IE
throw new Error(
"HTTP error! Failed to fetch spot price for caipAssetType(S{caipAssetType}) and vsCurrency(S${vsCurrency}): S{response.stat

)

const spotPricesRes = (await response.json()) as SpotPricesRes;

const assetTypeData
if ('assetTypeData)
logger.error(
"No spot price found in result for the token CAIP-19 asset type: S{caipAssetType}’,
i
throw new Error(
"No spot price found in result for the token CAIP-19 asset type: S{caipAssetType}’,

)

spotPricesRes[caipAssetTypel;

~

const vsCurrencyData = assetTypeData[vsCurrency];
if (!vsCurrencyData) {
logger.error(
"No spot price found in result for the currency: ${vsCurrency}’,
);
throw new Error(
"No spot price found in result for the currency: S${vsCurrency}’,
¥
}

return vsCurrencyData;

Recommendation

https://github.com/MetaMask/snap-7715-permissions/pull/158

e Add request timeout controls to prevent hanging requests.

e Implement runtime JSON schema validation via zod instead of relying on type assertions.

6.4 Gator - Missing Runtime Schema Verification for Profile Sync Store/Retrieve iwedium [Vixea

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by enforcing zod validation on profile sync read and writes. The client
provided additional details:

Resolution: Runtime schema validation and size limits were implemented for stored permission data.
Implementation: PR: MetaMask/snap-7715-permissions#157
Verification: Invalid JSON now fails validation and is rejected.

Description
The Profile Sync performs unsafe deserialization of permission data without runtime schema validation.

e Json.parse only validates JSON syntax, not data structure
e The type assertion as StoredGrantedPermission iS @ compile-time hint only

e At runtime, there’s no guarantee the parsed object matches the expected structure

The code comments explicitly state that “it is up to the SDK consumer to enforce proper schema management” (lines 147-149).
However, no such validation is implemented. Because profile sync data is shared across devices, erroneous or malicious data
could propagate and impact all connected devices.

Examples

packages/gator-permissions-snap/src/profileSync/profileSync.ts:L99-L118

[**
*# Retrieve all granted permission items under the "7715_permissions" feature will result in GET /api/v1/userstorage/7715_permiss
* VALUES: decrypted("JSONstringifyPermission1"”, storage_key), decrypted("JSONstringifyPermission2", storage_key).
* @returns All granted permissions.
*/
async function getAllGrantedPermissions(): Promise<
StoredGrantedPermission|]
> {
try {
await authenticate();

const items = await userStorage.getAllFeatureIltems(FEATURE);
return (
items?.map((item) => JSON.parse(item) as StoredGrantedPermission) ?? []
IE
} catch (error) {
logger.error('Error fetching all granted permissions:', error);
throw error;

packages/gator-permissions-snap/src/profileSync/profileSync.ts:L126-L141

async function getGrantedPermission(
permissionContext: Hex,
) : Promise<StoredGrantedPermission | null> {

try {
await authenticate();

const path: UserStorageGenericPathWithFeatureAndKey = 'S{FEATURE}.S{generateObjectKey(permissionContext)}";
const permission = await userStorage.getItem(path);

return permission
? (JSON.parse(permission) as StoredGrantedPermission)
: null;
} catch (error) {
logger.error('Error fetching granted permissions:', error);
throw error;

setter should prevent the storage of non conformant structures

packages/gator-permissions-snap/src/profileSync/profileSync.ts:L144-L166

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/157

Store the granted permission in profile sync.

Persisting "<permissionContext>" key under "gator_7715_permissions" feature

value has to be serialized to string and does not exceed 400kb

it is up to the SDK consumer to enforce proper schema management

will result in PUT /api/v1/userstorage/gator_7715_permissions/Hash(<storage_key+<permissionContext>">)
VALUE: encrypted("JSONstringifyPermission"”, storage_key).

@param storedGrantedPermission - The permission response to store.

async function storeGrantedPermission(
storedGrantedPermission: StoredGrantedPermission,
) : Promise<void> {

try {
await authenticate();

const path: UserStorageGenericPathWithFeatureAndKey = 'S{FEATURE}.S{generateObjectKey(storedGrantedPermission.permissionRe
await userStorage.setItem(path, JSON.stringify(storedGrantedPermission));
} catch (error) {

logger.error('Error storing granted permission:', error);
throw error;

Recommendation
Implement runtime schema validation using Zod for all stored permission data.

Add size validation before storage to enforce the documented 400kb limit and handle validation errors gracefully to prevent
crashes from corrupted data.

6.5 Gator - Inconsistent Atomicity Expectation in Batch Permission Grants grm (Ve

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by first checking all permissions for approvals and only storing them,
when the complete batch is approved. The client provided additional details:

Resolution: Updated the implementation to ensure permission requests are processed sequentially. Storage is only
updated once all permissions have been successfully processed, guaranteeing atomicity.

Implementation: PR: MetaMask/snap-7715-permissions#150

Verification: Partial failures were confirmed to no longer result in orphaned permissions.

Description

The batch permission handling in grantpermission introduces a critical atomicity flaw. When processing multiple permissions,
successful grants are written to ProfileSync but are never reported back to the requesting dApp if any subsequent grant fails.
Because Ppromise.all aborts on the first rejection, earlier successful operations remain committed while the overall request is
returned as a failure.

This results in orphaned permissions: permissions that exist in the system but are unknown to the client. Such partial success
weakens transactional integrity, leading to semi-consistent state, potential permission confusion, and corrupted audit trails. Since
partial permissions are not returned the severity was estimated as Minor.

Example
A batch request [a, B, c] :

e A and B succeed and are stored.
e ¢ fails.

e The dApp receives a total failure response, but » and s remain silently stored in ProfileSync.

// Batch request: [Permission A, Permission B, Permission C]

// Execution flow:

// 1. Permission A: ﬁ Signed — ﬁ Stored — @ Success

// 2. Permission B: ﬁ Signed — ﬁ Stored — ﬁ Success

// 3. Permission C:]i? Signed — M Storage Fails — #f Promise.all REJECTS

// Result: Permissions A & B are stored but NEVER returned to dApp
// Impact: Orphaned permissions in storage, inconsistent dApp state

packages/gator-permissions-snap/src/rpc/rpcHandler.ts:L50-L84

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/150

VEZS

*

Handles grant permission requests.

*

@param params - The parameters for the grant permission request.
*# @returns The result of the grant permission request.
*/

const grantPermission = async (params?: Json): Promise<Json> => {

logger.debug('grantPermissions()"', params);

const { permissionsRequest, siteOrigin } =
validatePermissionRequestParam(params) ;

const responses = await Promise.all(
permissionsRequest.map(async (request) => {
const handler =
permissionHandlerFactory.createPermissionHandler(request);

const permissionResponse =
await handler.handlePermissionRequest(siteOrigin);

if (!permissionResponse.approved) {
throw new Error(permissionResponse.reason);

}

if (permissionResponse.response) {
await profileSyncManager.storeGrantedPermission({
permissionResponse: permissionResponse.response,
siteOrigin,
1)
}

return permissionResponse.response;
i E
)5

return responses as Json[];

Recommendation
Adopt a transaction-safe approach:

e Use a two-phase commit with pending and confirmed states, or
e Replace promise.all with Promise.allsettled and introduce cleanup logic to roll back partial grants, or

e have ProfileSync provide a transaction wrapper.

6.6 Gator - Lifecycle Hooks Permission Used Primarily for Development Features (i

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by only including endowment:lifecycle-hooks When snapEnv === 'local' . The

client provided additional details:

Resolution: endowment:lifecycle-hooks was removed from production builds.
Implementation: PR: MetaMask/snap-7715-permissions#164.
Verification: The manifest was reviewed to confirm its removal.

Description

The endowment:lifecycle-hooks permission is requested but the oninstall handler primarily serves development purposes, with
minimal production functionality (welcome screen). This expands the attack surface for limited production benefit and violates
the principle of least privilege.

1. Development-only logic (lines 243-254): Conditional installation of the message signing snap only in local development
mode

2. Minimal production functionality (line 258): Only shows a welcome screen

The development logic is gated behind environment conditions (snapEnv === 'local' && isStorePermissionsFeatureEnabled), meaning that
in production builds, the lifecycle hook primarily serves to display a welcome screen - functionality that could be handled
through other means.

Example

packages/gator-permissions-snap/src/index.ts:L232-L259

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/164

export const onInstall: OnInstallHandler = async () => {

if (snapEnv === 'local' && isStorePermissionsFeatureEnabled) {
const installedSnaps = (await snap.request({
method: 'wallet_getSnaps’,
})) as unknown as GetSnapsResponse;
if (!installedSnaps[MESSAGE_SIGNING_SNAP_ID]) {
logger.debug('Installing local message signing snap');
await snap.request({
method: 'wallet_requestSnaps',
params: {
[MESSAGE_SIGNING_SNAP_ID]: {},

await homepage.showWelcomeScreen();

s

Recommendation

Consider removing the endowment:lifecycle-hooks permission for production builds since:

6.7 Gator - Misleading Debug Message v

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by changing the debug message text. The client provided additional
details:

Resolution: The debug log message in getNonce() was corrected.
Implementation: PR: MetaMask/snap-7715-permissions#156.
Verification: Logs now accurately reflect the function name.

Description
The function is getNonce and the debug log prints BlockchainTokenMetadataClient :getTokenBalanceAndMetadata() .

packages/gator-permissions-snap/src/clients/nonceCaveatClient.ts:L33-L46

public async getNonce({
chainId,
account,
oA
chainId: number;
account: Hex;
}): Promise<bigint> {
logger.debug('BlockchainTokenMetadataClient :getTokenBalanceAndMetadata()"');

if (!chainId) {
const message = 'No chainId provided to fetch nonce';

logger.error(message) ;
throw new Error(message);

}

Recommendation

Fix debug message.

6.8 Gator - Recommendation: Tokenlcon SVG Runtime Type Enforcement (Vs

Resolution

Fixed in MetaMask/snap-7715-permissions@ 476e653 by enforcing zod schema input validation on the caller provided
parameters. The client provided additional details:

Resolution: Runtime type checks were added for SVG inputs (base64 data URI, width, height).
Implementation: PR: MetaMask/snap-7715-permissions#155
Verification: Malformed inputs are rejected at runtime.

Description

https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/156
https://github.com/MetaMask/snap-7715-permissions/commit/476e6534f9e219ac130f7e9c4f10f6b3f17b12ed
https://github.com/MetaMask/snap-7715-permissions/pull/155

The Ttokenicon SVG image is generated through string concatenation, which poses a potential risk of HTML injection. The image’s
width and height are not enforced at runtime and may deviate from their compile-time type declarations. Although we did not
identify any instances where this issue is directly exploitable, we strongly recommend implementing runtime type checks and
format validations to mitigate potential risks.

e base64 data uri is always in data uri format when passed by callers. however the function does not enforce it.

e width/height are never passed to Tokenlcon and defaults to numeric 24 (px).

Also, the SVG is rendered within an tag, which prevents JavaScript or interaction events from being supported.
Nevertheless, the inputs should be strictly validated to reduce attack surface.

Examples

packages/gator-permissions-snap/src/ui/components/Tokenlcon.tsx:L11-L23

export const TokenIcon: SnapComponent<TokenIconParams> = ({
imageDataBase64,
altText,
width = 24,
height = 24,
}) => A
if (!imageDataBase64) {
return <Text> </Text>;

const imageSvg = “<svg xmlns="http://www.w3.0rg/2000/svg" width="24" height="24" viewBox="0 0 24 24">

<image href="S${imageDataBase64}" width="S${width}" height="S${height}" />
</svg>;

7 Document Change Log

Version Date Description
1.0 2025-08-20 Initial report
11 2025-10-28 Mitigations review: MetaMask/snap-7715-permissions@476e653
1.2 2025-10-30 Mitigations review: MetaMask/snap-7715-permissions@6da514a

Appendix 1- Files in Scope
This review covered the following files:
File

LICENSE.APACHE2

LICENSE.MITO

packages/gator-permissions-snap/images/icon.svg
packages/gator-permissions-snap/images/toggle_disabled.svg
packages/gator-permissions-snap/images/toggle_enabled.svg
packages/gator-permissions-snap/jest.config.js
packages/gator-permissions-snap/jest.setup.ts
packages/gator-permissions-snap/scripts/build-preinstalled-snap.js
packages/gator-permissions-snap/snap.config.ts
packages/gator-permissions-snap/src/clients/accountApiClient.ts
packages/gator-permissions-snap/src/clients/blockchainMetadataClient.ts
packages/gator-permissions-snap/src/clients/nonceCaveatClient.ts
packages/gator-permissions-snap/src/clients/priceApiClient.ts
packages/gator-permissions-snap/src/clients/types.ts
packages/gator-permissions-snap/src/constants.ts
packages/gator-permissions-snap/src/core/accountController.ts
packages/gator-permissions-snap/src/core/chainMetadata.ts
packages/gator-permissions-snap/src/core/confirmation.tsx
packages/gator-permissions-snap/src/core/confirmationFactory.ts
packages/gator-permissions-snap/src/core/permissionHandler.ts
packages/gator-permissions-snap/src/core/permissionHandlerContent.tsx
packages/gator-permissions-snap/src/core/permissionHandlerFactory.ts
packages/gator-permissions-snap/src/core/permissionRequestLifecycleOrchestrator.ts
packages/gator-permissions-snap/src/core/rules.tsx
packages/gator-permissions-snap/src/core/types.ts

packages/gator-permissions-snap/src/homepage/index.tsx

SHA-1 hash

7c¢8c3d0d057417da25b92823¢c1075d9b4297af55
8ac914386a5bf48bbf57f0289773e24ba5c36086
747c68b49c15%9aa4e320b76cfe1d0861798da24f
08661c273c3fbBd1065b4a5cd1f3623¢c1f9¢cBe15
701275f64fa89512685847041787c7d0e17aca83
a39ea3b638dfc3ee88ffdB3da53523107c325a30
bbee55256035e8e23710822bd96921cb52eeb3d1
c7486810f94aefbfOc8cdf@8d8c9ce1711ff157b
a8dcBf2e03e43cfe6690118c98618456789f7118
267479513f5a3b52ff8cbalb7ca71d@8d3fec6ece
15c616a9dal16bfaea627f77a1lbad64e96596b4a
b938be986102b867d2ae1778285d92f683ee283¢c
614c23b307679e6d877a83b2c4bec561ffb93fe2
ffaaefcf6edd938bcal98e59d5037b7dab088363
9f6143eefc5a922d96e846602b95879908789610
000c53d85ee1621c24fbbcbdale51be898df732a
3154803c5f6a8b76bf172bb6e738c844c683d106
b3912e984d125e5698c1alaa9b21b236d41696ce
219271b3698619e4cc15285e3565d16641352357
22c1ceb774766fa539cfbBc3a2fa7c5b7¢507298
12b97c1fe502ee276748a09308cd36e24f9ff3e3
27328f3f8e7a9543ad783174cb8dcf8bB14df3a2
£868563d74e78c78afd205e0a16b108a9118ce74
49598b8eb8f1a1b757a5072bf2737cdc14407e9a
ee73f9016f324e86f0Bccf94840ffdbef1ad4174f4

a4eab60d11f4ef406b71172786d4389c59b9ced9b

File
packages/gator-permissions-snap/src/index.ts
packages/gator-permissions-snap/src/permissions/contextValidation.ts
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/caveats.ts
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/content.tsx
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/context.ts
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/index.ts
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/rules.ts
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/types.ts
packages/gator-permissions-snap/src/permissions/erc20TokenPeriodic/validation.ts
packages/gator-permissions-snap/src/permissions/erc20TokenStream/caveats.ts
packages/gator-permissions-snap/src/permissions/erc20TokenStream/content.tsx
packages/gator-permissions-snap/src/permissions/erc20TokenStream/context.ts
packages/gator-permissions-snap/src/permissions/erc20TokenStream/index.ts
packages/gator-permissions-snap/src/permissions/erc20TokenStream/rules.ts
packages/gator-permissions-snap/src/permissions/erc20TokenStream/types.ts
packages/gator-permissions-snap/src/permissions/erc20TokenStream/validation.ts
packages/gator-permissions-snap/src/permissions/iconUrtil.ts
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/caveats.ts
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/content.tsx
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/context.ts
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/index.ts
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/rules.ts
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/types.ts
packages/gator-permissions-snap/src/permissions/nativeTokenPeriodic/validation.ts
packages/gator-permissions-snap/src/permissions/nativeTokenStream/caveats.ts
packages/gator-permissions-snap/src/permissions/nativeTokenStream/content.tsx
packages/gator-permissions-snap/src/permissions/nativeTokenStream/context.ts
packages/gator-permissions-snap/src/permissions/nativeTokenStream/index.ts
packages/gator-permissions-snap/src/permissions/nativeTokenStream/rules.ts
packages/gator-permissions-snap/src/permissions/nativeTokenStream/types.ts
packages/gator-permissions-snap/src/permissions/nativeTokenStream/validation.ts
packages/gator-permissions-snap/src/permissions/permissionOffers.ts
packages/gator-permissions-snap/src/permissions/validation.ts
packages/gator-permissions-snap/src/profileSync/config.ts
packages/gator-permissions-snap/src/profileSync/index.ts
packages/gator-permissions-snap/src/profileSync/options.ts
packages/gator-permissions-snap/src/profileSync/profileSync.ts
packages/gator-permissions-snap/src/rpc/permissions.ts
packages/gator-permissions-snap/src/rpc/rpcHandler.ts
packages/gator-permissions-snap/src/rpc/rpcMethod.ts
packages/gator-permissions-snap/src/services/nonceCaveatService.ts
packages/gator-permissions-snap/src/services/tokenMetadataService.ts
packages/gator-permissions-snap/src/services/tokenPricesService.ts
packages/gator-permissions-snap/src/stateManagement.ts
packages/gator-permissions-snap/src/ui/components/DateTimeField.tsx
packages/gator-permissions-snap/src/ui/components/DropdownField.tsx
packages/gator-permissions-snap/src/ui/components/Field.tsx
packages/gator-permissions-snap/src/ui/components/InputField.tsx
packages/gator-permissions-snap/src/ui/components/ShowMoreText.tsx
packages/gator-permissions-snap/src/ui/components/SkeletonField.tsx
packages/gator-permissions-snap/src/ui/components/TextField.tsx
packages/gator-permissions-snap/src/ui/components/TokenField.tsx

packages/gator-permissions-snap/src/ui/components/Tokenlcon.tsx

SHA-1 hash
0f20db943b3149860229289b919bbf4d3159d6e1
da927c5d8417245d9e0a7f9f9f3824a57ac1214a
3e580ebc593126b9abBc7a95d1eec6297e28319b4
27b427d995101c6d564e2a5b581b29779ba6355a
alladadccdc7cad42c¢f341661cb051447d8ec3309
5d3f5087d7f8da91cc24a4de2fb7fccb71abe8f3
c7c863a7c98a6ec1518980c614df92a1c227e451
20418570e8fcee337d114ec9018ca9%9e9ab38cBaf
444135ef86b13eb3936351bf974e66837e505851
2033d141d9c640a49524bd095dd0770a81272ada
f6c1e33326fca2399c06a9421413fa52ebf1b74b
782659771f7421505993971399a6e7bd4h905e92¢
4fae5c9cB1e8b67b795be12¢398742ad51b43ddd
dcdb0284f24dcc714f547d099f0c5787d8bb2058
0d4f331525cbc4620fd342289830bdc4e39fb586
a46c889cef8def3d0c38a81632f3bbBcO1a8e769
779b365201bfB508da53d586d480666539€797156
0a99b0219571fc689351692abeff69e388a08eaf
47cf7be8e020da538327640f6636bfac7ab85b92
4570cbebf93d87ee97dfdd4bd8b6c5018e22d7b5
5e29e4203477a0d73a53809d2fed4edbed8c1b3fd
587cec294c818bbb439fb193224e6b19aaf6cdbe
98b2678cdBce5fdd515¢cc212b82739115bbf36f0
2d2525d19116559f318fab21d4689ccbaae8355f
46051eed07543ed15cd1f2602628dadf471e453a
£37d2726beeeac75966081a54423b590f2d3ba50
ac43e0db5c57c09861dd42e85db16760a6fd1a15
2120ed1ac42791fa02118f4be8e3a65932924267
e€3dde6fc4d205be1e3b691bc85cadc9ffb661abs
b716b7ddca846675c379291ef44ac3207063fa173
5fd7bf937abffd9ce3ebBe4f60e116c5f618439a
aec3bB51220d3c9a75721b9460adaf7182dab39e
dac746182cf8d86d0ded2af2ff1d9e65c2c2dcc
9b64c57dbBb347ff0196df5b28320dc3¢c830759c¢
7d95e45f69db1ccdacd6243960db385147e4f2df
29505f2c36567d0aaeh6208e48617406c2e11960
f946be64cb28cf86T098e3be4cfBbf9421806¢c539
359f9762a300dd59b69a15ccc37dcbd233c8c128
d7a96554058e1e4a77276178e899add341040bb6
€009720b95652254baeb6dd44d76e147753e12161
3cb3498b1a1d16924c11335e0c49e7bBeecd30a4d
79383d014f03b0627608697f090a8fdfde7cB5b7
£813297fb00B8c5da179cad4e8d7e2b97ee7dface2
79007573da3258ef15acf5259f4a939c5995efee
b80876bafBb113f39657ea512a2b4745ada3f651a
b7fd79cfe93c00c833b41208aed12421755533¢0
9c¢2d2a76f4d8b5a8h690780cObcba18898426fc2
25837e2cebcf90a53ccOf5f7a344c12bcBat1743
f81a639e1f3d7c2e46e85fe45f32170730a03d08
f79b9f2c62bb93995cab6f73da73c60ab9eb64ac?
3f7d62f5f85b85f92795195a7d1fdaB619551304
76d72636ecb2fd163fc768e831f9cc10608143c09

231be99e9d0cd83b8ec4a295a7836813e7cf5d3f

File
packages/gator-permissions-snap/src/ui/components/Tooltiplcon.tsx
packages/gator-permissions-snap/src/ui/components/index.ts
packages/gator-permissions-snap/src/userEventDispatcher.ts
packages/gator-permissions-snap/src/utils/locale.ts
packages/gator-permissions-snap/src/utils/string.ts
packages/gator-permissions-snap/src/utils/time.ts
packages/gator-permissions-snap/src/utils/validate.ts
packages/gator-permissions-snap/src/utils/value.ts
packages/gator-permissions-snap/svg-transformer.js
packages/permissions-kernel-snap/images/icon.svg
packages/permissions-kernel-snap/jest.config.js
packages/permissions-kernel-snap/jest.setup.ts
packages/permissions-kernel-snap/scripts/build-preinstalled-snap.js
packages/permissions-kernel-snap/snap.config.ts
packages/permissions-kernel-snap/src/index.ts
packages/permissions-kernel-snap/src/registryManager.ts
packages/permissions-kernel-snap/src/rpc/rpcHandler.ts
packages/permissions-kernel-snap/src/rpc/rpcMethod.ts
packages/permissions-kernel-snap/src/utils/error.ts
packages/permissions-kernel-snap/src/utils/index.ts
packages/permissions-kernel-snap/src/utils/validate.ts
packages/shared/jest.config.js
packages/shared/src/constants/index.ts
packages/shared/src/types/7715-permissions-request.ts
packages/shared/src/types/7715-permissions-response.ts
packages/shared/src/types/7715-permissions-types.ts
packages/shared/src/types/common.ts
packages/shared/src/types/index.ts
packages/shared/src/types/snap-permission-registry.ts
packages/shared/src/types/snap.ts
packages/shared/src/utils/common.ts
packages/shared/src/utils/error.ts
packages/shared/src/utils/index.ts

packages/shared/src/utils/logger.ts

SHA-1 hash
Bedbe761aB8aebbf2fff3b3e1865203bbalb7¢c569
1e7f4089b50612604c811ed49bced504f0723c90d
b2ea29722fecda25916749a37bf605e6d6d13b6b
867998bcfcbaa5eb79d9586bddf8971023a6c3ee
2f91bb16€9414c11ff128a69139fe5b9045b1b5b
57587b36ee311a48ec5c9e1a8fd2a26dbba33ef3
2d1858c0d61160369ec61d71c632430e53b16ech
86317060f35d107b0d635834bcd85ff7e5618ce7
36626851f55d008bf32a6a56697d89e566€0762¢
747c68b49c159aa4e320b76cfe1d086f798da24f
d76b4c37b6a3673a45a454ba99f8e4731ee5adfd
bbee55256035e8e23710822bd96921cb52eeb3d1
1de9b4daid58fclab1cach@f9e5e7bd7¢c3c01733
1aB5bb79e1bcba834a3fac4cb1901ab591f80542
237446a92c4fc9854d1254dabdc176bd94c75455
50f5ab94e15db40b63ee716b3186bBOb3c7ae345
2826b12d6f4ee93c14fcelab736eleac5465f2a6
83699d8982¢c18bd66c0f3e3a0153bb973cf6994e
87671ab801b32df74000cd4f7a505c5328c9940f
8d5ec6b8918c0c3532e51237a89a54dbd12228d0
d51fa025396afc4352db584b22621¢cf273b17371
2¢7fbdeb105504e3de2afda34842356d68b04c48
4c674df45ba55061d0de3edd7a7d3f9caf5cBaaa’
c2273df9528a3b839eeccce3aB797ccf61411c07
d507e914fa723dc9dd1dd421f52bfB52e3e5e0¢cc
20e1d31454€e988e25805€085484c5d5600e359
b9bef1f6d457606dd2646d99294429c7040342b7
ea43b5adbedefB8bd813fd47ac55539ad8248d30
c10408dca93ae4bed9013d3400c4bef1391c93b43
53458a1caced5d72c1b4fd480dc5ed72238f763¢c
£8d428602679d48307ac9bB529adf6767edea37bo
6eee9d3e7d525e570cB7a7de8eaabbd3463ffdb5
b99980208c35ab16669225346a38bf7b539253a7

bce3117d83080b7e727232ee195febde9chb®119b

Appendix 2 - Disclosure

Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

POWERED BY ‘ consensys

https://consensys.io/

