@ Diligence

1 Executive Summary
2 Scope
3 System Overview

4 Security Specification
4.1 Actors
4.2 Trust Model

4.3 Other Security-Related
Aspects

5 Findings

5.1 Consider Allowing approve
Even When Contract Is Paused

m v Fixed

5.2 Consider Making Forced
Transfers Revert for Zero Amount

m Acknowledged

5.3 Version Mismatch for

evm-m-extensions in mUSD

m Acknowledged

5.4 ERC-20 Token Name Not
Correct | ¢ Fixed

5.5 Cumulative Hooks Should
Always Call Their super , Even if

Currently Empty Acknowledged

5.6 Several Public Functions
Could Be External | v Fixed

5.7 initialize Function Should
Probably Not Be Virtual | v Fixed

5.8 Inconsistent Order of
Functions in Interface and

Contract | ¢ Fixed

Appendix 1 - Files in Scope

Appendix 2 - Document
Changelog

Appendix 3 - Disclosure
A.3.1 Purpose of Reports

A.3.2 Links to Other Web Sites
from This Web Site

A.3.3 Timeliness of Content

AUDITS

FUZZING SCRIBBLE ABOUT

MetaMask USD Token

Date August 2025

1 Executive Summary

George Kobakhidze, Heiko

Auditors i
Fisch

This report presents the results of our engagement with MetaMask to review the contract for the MetaMask USD
(mUSD) token, implemented by MO.

The review was conducted in the week of August 11-15, 2025, by Heiko Fisch and George Kobakhidze.

The focus of this security audit is the musp token contract, designed for integration with MetaMask’s ecosystem. The musp token is built upon the MO framework,
which leverages real-world assets (RWA) to mint a rebasing m token on-chain, with subsequent yield from RWAs distributed through m token rebasing
mechanisms.

The MO framework wraps the rebasing m token into non-rebasing mMextension tokens that feature customizable configurations for yield distribution. The musp token
represents one such implementation, utilizing the wvieldtoone extension to direct yield to a designated recipient. The broader MO framework and Mextension system
architecture is outside the audit scope, and the focus is specifically on the musp token contract implementation.

Beyond the standard token and MO framework functionality, the musp token incorporates additional administrative controls, including pausability mechanisms,
account freezing capabilities, and forced transfer functionality for frozen assets. The audit scope specifically covered the administrative management systems
governing contract pausing behavior, along with two specialized functions enabling the movement of musp tokens from frozen accounts, both individually and
through batch operations.

The security assessment of the musp token contract revealed no significant security vulnerabilities. The codebase demonstrated high quality standards with clean
organization, comprehensive documentation, and logical structure. Several minor and informational findings were identified, including refinements to approval
management during paused states and small code quality improvements.

It should be noted that musp has privileged roles that can freeze and seize assets at any time. Moreover, the contract is upgradeable, meaning its logic can be
changed by the proxy admin owner. Extremely high standards of operational security are required for such powerful roles.

After the report delivery, fixes or acknowledgements were provided for each issue found. Individual commits and PRs are reflected in the resolutions of the
associated issues. As requested by the MO team, the final commit for revision was bss594cdscsasb27534bf20f09ffesfd74bb18f7f Which contained two changes on top of
fixes:

e “METAMASK USD"” ASCI!I art

¢ changes to the usage of _revertIfinsufficientBalance() .

2 Scope

This review focused on the following repository and hash:
¢ MO mUSD token contract repository at b62fab7¢c3e867b700bd81dad2ab140e074d98f32
Following the fix review, the last commit of the mUSD repository that we reviewed was b5594cd5c8a0b27534bf20109F f08Fd74bb18F7F .

The detailed list of files in scope can be found in the Appendix.

3 System Overview

The musp token operates within the broader MO ecosystem as a wrapped version of the underlying » token. While the complete MO framework is outside the
scope of this review, understanding the core mechanics of musp token creation and management is essential for evaluating its security properties.

The musp token lifecycle begins when approved users interact with the swapracility contract. These users deposit m tokens into the swapFacility , which then calls
the musp contract to mint an equivalent amount of musp tokens for the recipient. The process is fully reversible - users can burn their nusp tokens through the
same swapFacility to retrieve their original m tokens, completing the unwrapping process.

Beyond this core wrapping and unwrapping functionality, the musp contract implements standard ERC-20 token operations, including transfers, approvals, and
delegated transfers through transferfrom .

However, musp extends beyond typical token functionality with several administrative controls:

¢ Pause Functionality: The pause mechanism provides an emergency brake that halts transfers, wrapping, and unwrapping. Approvals are halted too, but we
discuss this in finding 5.1. Forced transfers, yield claiming, freezing and unfreezing, as well as not directly token-related operations like role management, are
exempt from the pause. When the contract is paused, this effectively freezes all “regular” musp activity across the network.

e Account Freezing: Individual accounts can be frozen, preventing them from sending and receiving funds, as well as initiating any token transfers. This
granular control allows administrators to isolate potentially compromised or non-compliant accounts without affecting the broader system operation. Yield
can still be claimed to the yield recipient even if that account is frozen; MO has confirmed that this is a deliberate exception.

¢ Forced Transfers: This administrative function enables the recovery of musp tokens from frozen accounts.

4 Security Specification

41 Actors
The relevant actors are listed below with their respective abilities:

e Default Admin - Able to change all the privileged roles in the system.
¢ Proxy Admin Owner - The musp token contract is upgradeable, and the Proxy Admin Owner is the address that can perform such an upgrade.

¢ MO Operational Administrators - Able to modify the greater MO framework properties that are defined outside the musp token, such as who is an approved
swapper and what extensions can be swapped between each other.

e Approved swappers - Able to swap (or “wrap”/“unwrap”) the musp tokens into m tokens and vice-versa, reducing and increasing the supply of musp tokens
respectively.

¢ Yield Recipient - Receives any yield generated from u token rebasing.

¢ Yield Recipient Manager - Able to modify who receives the yield.

¢ Pause Manager - Able to set the contract in the pause state, which stops musp wrapping, unwrapping, transfers, and even approvals.
¢ Freeze Manager - Can freeze and unfreeze accounts, disabling their ability to interact with the musp token contract.

¢ Forced Transfer Manager - Able to move out musp tokens from frozen accounts.

https://github.com/m0-foundation/mUSD/tree/b62fab7c3e867b700bd81dad2ab140e074d98f32
https://consensys.io/
https://consensys.io/audits/
https://consensys.io/fuzzing/
https://consensys.io/scribble/
https://consensys.io/about/

4.2 Trust Model

In any system, it’s important to identify what trust is expected/required between various actors. For this review, we established the following trust model:

e Default Admin - We trust this entity fully, as they essentially are able to change all other privileged functionality by modifying all privileged roles and assigned
addresses.

e Proxy Admin Owner - We trust this entity entirely as they can change the contracts as they want. The ability to upgrade the token contract gives the Proxy
Admin Owner complete control over the code as well as the data stored in the contract.

¢ MO Operational Administrators - We trust them to diligently perform any configuration changes as they could affect the economics of the musp token, such
as if an unauthorized entity is able to swap the tokens.

e Approved Swappers - They are privileged to swap musp tokens as they'd get access to the m token liquidity, but are not particularly trusted to do anything
special within the musp context alone. Them acting rationally, such as buying musp at a discount to swap into M, does support the economics of musp .

e Yield Recipient - They are likely to be an entity trusted by the owners of the musp token to then transfer the yield to them.

¢ Yield Recipient Manager - They are trusted not to misappropriate the yield by changing who receives it.

¢ Pause Manager - If the pause managers are compromised, the pauses could affect economic activity around the musp token by stopping all token operations.
e Freeze Manager - We trust them to freeze and unfreeze diligently, as a compromised freeze manager could even freeze DeFi contracts holding musp .

¢ Forced transfer manager - They are trusted not to abuse this capability to take control of funds without proper authorization.

4.3 Other Security-Related Aspects

¢ RWA. RWA assets are what's behind the value of musp tokens, so the value, and therefore some risk, is offchain. The onchain economics of musp , such as the
users’ willingness to hold and trade it at stable prices, depend on the state of RWA assets and access to them.

e Operational difficulties of musp . The greater MO framework around musp requires diligence and care for the system to function correctly. For example, the
swapFacility contract needs to have appropriate flags set on it, like approved swappers, and the other Mextension tokens, like musp , affect the underlying w
token, which is where the yield comes from. All moving pieces of the greater MO system need to be managed carefully for musp to work.

5 Findings
Each issue has an assigned severity:

. issues are directly exploitable security vulnerabilities that need to be fixed.

e [issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be exploited. All major issues should
be addressed.

e [Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear reason not to.

e [UIM issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers should use their own judgment as
to whether to address such issues.

Issues without a severity are general recommendations or optional improvements. They are not related to security or correctness and may be addressed at
the discretion of the maintainer.

5.1 Consider Allowing approve Even When Contract Is Paused g (Ve

Resolution

Fixed in commit abe4331467aaee24c64670e05f96f198b0bf6036 by removing the _beforeapprove() hook from the wusp contract.

Note: The behavior of evn-m-extensions discussed in the “Remark” section below remains unchanged, i.e., (1) accounts - even if unfrozen - can’t revoke
approvals for frozen accounts, and (2) frozen accounts can’t revoke approvals at all. Since evm-m-extensions is out of scope for this review, we set the finding to
“Fixed”, but the “Remark” part is really only “Acknowledged”.

Description

The wmusp contract is pausable. More specifically, it inherits from OpenZeppelin’s Ppausableupgradeable and calls _requireNotPaused(); iN _beforeApprove , _beforeWrap ,
_beforeunwrap , and _beforeTransfer . This means that allowance changes, wrapping and unwrapping, as well as transfers are not possible when the contract is paused.

For example, _beforeapprove looks as follows:

src/MUSD.sol:L101-L111

function _beforeApprove(address account, address spender, uint256 amount) internal view override {

_requireNotPaused();

super._beforeApprove(account, spender, amount);

As a side note, forced transfers, claiming yield (which entirely goes to a dedicated account), freezing, and unfreezing do not respect the paused status, since
these actions are only possible from privileged addresses. MO has confirmed that this is intentional.

We'd like to call into question whether changing the allowance - and in particular decreasing it or revoking an approval entirely - should be affected by the paused
status of the contract: First of all, in OpenZeppelin’s pausable ERC-20 contract, approve calls are exempt from the pause, so wmusp ‘s behavior would be different
from a standard OZ Erc2epausable Or ERC20PausableUpgradeable . Second, the ability to revoke approvals even when the contract is paused might be beneficial from a
security perspective. It is conceivable, for instance, that the contract was paused because of an ongoing hack; in this case users could revoke their approvals
during a pause and, thereby, secure their funds. Or even without a hack, a user might just want to be on the safe side and revoke an approval regardless of
whether the contract is paused or not.

In conclusion, we believe it is better to allow users to revoke approvals even when the contract is paused (or in other exceptional situations; see the remark below).

Recommendation

As discussed above, there are valid reasons why it might make sense to allow approve calls — in general or at least those that reduce the allowance or set it to zero
- even when the contract is paused. There are two ways to address this:

1. Allow approve calls also when the contract is paused. This is the same behavior as a standard OpenZeppelin pausable ERC-20 contract and has the security
benefits mentioned. It is also very easy to implement, as _beforeapprove can just be removed from wusp . The downside is that increasing the allowance is also
possible, which has no security benefit - but we don’t see a problem with this either.

2. Only allow approve calls that reduce the allowance or maybe even only calls that set it to zero. This would bring the discussed security benefits, without
unnecessarily permitting an allowance increase. The downside is that it is more difficult to implement and that this behavior is different from the well-known
OpenZeppelin codebase’s.

https://github.com/m0-foundation/mUSD/pull/15/commits/abe4331467aaee24c64670e05f96f198b0bf6036

Remark

There is a similar situation regarding the _beforeapproved hook in myieldToone : that it can be undesirable to be unable to revoke or reduce approvals in some
situations, even if a frozen account is involved. For instance, assume a contract C is deemed malicious and, therefore, frozen. Now even legit (i.e., unfrozen) users
can’t revoke their approval for that contract. Of course, it seems likely that C never gets unfrozen (so no transfers to or initiated by C could ever happen) and users
have to trust the rreeze_maNAGER_ROLE anyway, but it’s still unfortunate if users can’t revoke approvals at will. Similarly, there are conceivable (if a bit contrived)
scenarios, where it would be important for an erroneously frozen - and later to be unfrozen - account to be able to revoke approvals even while the account is still

frozen.

Since this is technically out of scope for the current review, we're not discussing this topic extensively in this report. We have, however, discussed it with MO
separately, as this behavior is inherited by - and therefore relevant for - musp .

5.2 Consider Making Forced Transfers Revert for Zero Amount @ Acknowiedged

Resolution

MO acknowledged this with the following comment:

Since the ERC20’s transfer event must be emitted even if the amount is e, we will keep the same behavior for the Forcedtransfer event.

Description

The wmusp contract introduces forced transfers, which allow an address with the Forcep_TrRansFER_MANAGER_ROLE tO move funds from a frozen account to a different
address. Assuming all other conditions are met, forced transfers with amount zero succeed:

src/MUSD.sol:L166-L178

function _forceTransfer(address frozenAccount, address recipient, uint256 amount) internal {
_revertIfInvalidRecipient(recipient);
_revertIfNotFrozen(frozenAccount);

emit Transfer(frozenAccount, recipient, amount);
emit ForcedTransfer(frozenAccount, recipient, msg.sender, amount);

if (amount == @) return;
_revertIfInsufficientBalance(frozenAccount, balanceOf(frozenAccount), amount);

_update(frozenAccount, recipient, amount);

This behavior mimics regular transfers, which also succeed for amount zero - which is, in fact, mandated by the ERC-20 specification:
Note Transfers of O values MUST be treated as normal transfers and fire the transfer event.

However, it is debatable whether forced transfers should indeed behave in the same way regarding zero-amount transfers: Unlike regular transfers, forced
transfers move someone else’s funds without permission and should, therefore, be considered exceptional occurrences. Initiating a forced transfer without effect
is most likely a mistake in the first place, and reverting might be considered beneficial in such a scenario.

Recommendation

Consider making forced transfers with amount zero revert, even if all other conditions for a forced transfer are met.

5.3 Version Mismatch for evm-m-extensions in mUSD @ acknowledged

Resolution

Deployment to mainnet addressed as per MO’s comment:
We used commit hash sede1be2d971131c09a417cc5e359ad60de1bsab When deploying to Mainnet.
That being said, no change impacted mUSD between 9ef144deee35071e02b10b62004b8d2435ddfe anNd 56de1be2d971131c09a417cc5e359ad60de1b84b .

Note: The version of evm-m-extensions that is currently used in musp (where “currently” means precisely: in revision
b5594cd5¢c8a0b27534bf20f09ff08fd74bb18f7f, which is the final version we considered in this review - but not the version that was originally deployed) is
909c536deac54de5a5bc3305f57e310¢c327fb441 and, therefore, one commit ahead of 50de1be2d971131c09a417cc5e359ad60de1b84b.

Description

musp inherits extensively from contracts in the evm-m-extensions repository. While this code itself was not in scope for this audit, we had to check some of it for
compatibility with musp and were asked to consider revision e11fsafefeaze1a9796fcaciad29896c60b65344 for this.

It should be noted, however, that the submodule that is actually used in the musb repository is at revision 9efi44dece3so71e02b1ffob62004b8d2435ddfe and therefore behind
the commit hash we were given.

Recommendation

Since the evm-m-extensions are not in scope for this audit, we cannot give a recommendation as to which version to use. From the limited perspective of this review,
the revision that is currently utilized in musp at the relevant commit hash is behind the one we were told was going to be used for musp .

5.4 ERC-20 Token Name Not Correct [vFixed

Resolution

Fixed in commit 6afec02b0eel166ec26c91412afa68d75a49a89e7 by changing the name to “MetaMask USD” from “MUSD"” before deploying to Mainnet.

Description

According to the MetaMask team, the token name should be “MetaMask USD”. However, the ERC-20 token name - which is hard-coded in the source file - is
“MUSD":

src/MUSD.sol:L56

https://eips.ethereum.org/EIPS/eip-20
https://github.com/m0-foundation/evm-m-extensions/compare/90f144deee35071e02b1ff0b62004b8d2435ddfe...50de1be2d971131c09a417cc5e359ad60de1b84b
https://github.com/m0-foundation/mUSD/tree/b5594cd5c8a0b27534bf20f09ff08fd74bb18f7f
https://github.com/m0-foundation/evm-m-extensions/tree/909c536deac54de5a5bc3305f57e310c327fb441
https://github.com/m0-foundation/evm-m-extensions/tree/50de1be2d971131c09a417cc5e359ad60de1b84b
https://github.com/m0-foundation/evm-m-extensions
https://github.com/m0-foundation/evm-m-extensions/tree/011f84f0f6a701a9796fcac1ad29896c60b65344
https://github.com/m0-foundation/mUSD/
https://github.com/m0-foundation/evm-m-extensions/tree/90f144deee35071e02b1ff0b62004b8d2435ddfe
https://github.com/m0-foundation/mUSD/pull/18/commits/6afec02b0ee166ec26c91412afa68d75a49a89e7

__MYieldToOne_init("MUSD", "mUSD", yieldRecipient, admin, freezeManager, yieldRecipientManager);

Recommendation

In the line above, change musb toO MetaMask USD .

5.5 Cumulative Hooks Should Always Call Their super , Even if Currently Empty = acinowiedged

Resolution

Acknowledged by MO with the following comment:

We will consider including it in future token extension models if the contract hierarchy extends beyond one level or once we add logic to any base
contracts.

Description
The _beforeclaimyield hook in wusp is implemented as follows:

src/MUSD.sol:L148-L152

function _beforeClaimYield() internal view override onlyRole(YIELD_RECIPIENT_MANAGER_ROLE) {}

This hook ensures that the caller has the vIeLp_ReciPIENT MANAGER_ROLE , but it doesn’t call super._beforeclaimvield(); . Specifically, this means that
MyieldToOne._beforeClaimyield Won't be called when yield is claimed on wusp . Crucially, as this function has an empty body and no modifiers, this won’t make a
behavioral difference.

Nevertheless, we think it is good style for simple, “cumulative” hooks (i.e., hooks that add conditions that must be fulfilled, and revert if any of these must not) to
always call the same hook on super , even if it is currently empty. While any code change should be thoroughly reviewed, this pattern is generally quite robust
against changes in the code such as adding a condition to a previously empty hook or changes in the inheritance relationships.

Recommendation

We recommend adding super._beforeclaimyield(); to the body of musp._beforeciaimvield . In general, for cumulative hooks, we believe it makes sense to always call the
same hook on super - even if it is currently empty.

Remark

This pattern of not calling the same hook on super if it's empty is also present in out-of-scope code. For example, in myieldToone , the hooks _beforeapprove ,
_beforeWrap , _beforeUnwrap , and _beforeTransfer don’t call their corresponding hook on super. Our general recommendation would be to change this consistently
throughout the entire codebase, but we don’t recommend doing this before a deployment/upgrade and would rather wait with this until the next audit of the
affected code.

5.6 Several Public Functions Could Be External (v

Resolution

Fixed in commit f3454f8fec6e327d34cclaaf96db7ee213ad4d72 and commit 964bee40a1874c51f6bde09981d7af7628cf987b by changing the visibility on the
initialize() and pause() / unpause() functions respectively.

Description
The initialize , pause , and unpause functions are public :

src/MUSD.sol:L45-L52

function initialize(
address yieldRecipient,
address admin,
address freezeManager,
address yieldRecipientManager,
address pauser,
address forcedTransferManager
) public virtual initializer {

src/MUSD.sol:L66

function pause() public onlyRole(PAUSER_ROLE) {

src/MUSD.sol:L71

function unpause() public onlyRole(PAUSER_ROLE) {

However, none of them is called internally. As it seems unlikely that wmusp is meant to be inherited from (so they could be called internally in a derived contract), it
would be more accurate to make these functions external .

Recommendation

Consider making the initialize , pause , and unpause functions external instead of public .

5.7 initialize Function Should Probably Not Be Virtual jvrie

Resolution

Fixed in commit f3454f8fec6e327d34cclaaf96db7ee213ad4d72 by removing virtual from initialize() .

https://github.com/m0-foundation/mUSD/pull/15/commits/f3454f8fec6e327d34cc1aaf96db7ee213ad4d72
https://github.com/m0-foundation/mUSD/pull/15/commits/964bee40a1874c51f6bde09981d7af7628cf987b
https://github.com/m0-foundation/mUSD/pull/15/commits/f3454f8fec6e327d34cc1aaf96db7ee213ad4d72

Description
There is only one virtual function in musp , and it is initialize .

src/MUSD.sol:L45-L52

function initialize(
address yieldRecipient,
address admin,
address freezeManager,
address yieldRecipientManager,
address pauser,
address forcedTransferManager
) public virtual initializer {

Especially the fact that functions from the _beforex family — which are frequently overridden in derived contracts - are not virtual suggests that wusp is not
intended to be inherited from. In that case, it makes sense to remove the virtual keyword from initialize in order to avoid a contradictory impression.

Recommendation

If musp is not intended to be inherited from, the virtual keyword can be removed from initialize , SO NO function in the contract is virtual. Otherwise, it seems that
more functions should be virtual, in particular the _beforex functions.

5.8 Inconsistent Order of Functions in Interface and Contract iz

Resolution

Fixed in commit 5131ea952adea0fa506a8e4d5ffe587142f27d7f by moving forceTransfer before forceTransfers .

Description

Ideally, the function declarations in the interface and the corresponding function definitions in the contract are in the same order, just for the sake of consistency
and readability. In musp , forceTransfer (single force transfer) occurs before forcetransfers (multiple force transfers), which most would probably say is also the more
natural order:

src/IMUSD.sol:L51-L71

VEZ
* @notice Forcefully transfers tokens from frozen accounts to recipients.
* @dev Can only be called by an account with the FORCED_TRANSFER_MANAGER_ROLE.
* @param frozenAccounts The addresses of the frozen accounts.
* @param recipients The addresses of the recipients.
* @param amounts The amounts of tokens to transfer.
*/
function forceTransfers(
address[] calldata frozenAccounts,
address[] calldata recipients,
uint256[] calldata amounts
) external;

/**
* @notice Forcefully transfers tokens from a frozen account to a recipient.
* @dev Can only be called by an account with the FORCED_TRANSFER_MANAGER_ROLE.
* @param frozenAccount The address of the frozen account.
* @param recipient The address of the recipient.
* @param amount The amount of tokens to transfer.
*/
function forceTransfer(address frozenAccount, address recipient, uint256 amount) external;

In 1MusD , hOWGVGI’, forceTransfers OCCUrS before forceTransfer :

src/MUSD.sol:L75-L97

/// @inheritdoc IMUSD
function forceTransfer(
address frozenAccount,
address recipient,
uint256 amount
) external onlyRole(FORCED_TRANSFER_MANAGER_ROLE) {
_forceTransfer(frozenAccount, recipient, amount);

/// @inheritdoc IMUSD
function forceTransfers(
address[] calldata frozenAccounts,
address[] calldata recipients,
uint256[] calldata amounts
) external onlyRole(FORCED_TRANSFER_MANAGER_ROLE) {
if (frozenAccounts.length != recipients.length || frozenAccounts.length != amounts.length) {
revert ArrayLengthMismatch();

for (uint256 i; i < frozenAccounts.length; ++i) {
_forceTransfer(frozenAccounts[i], recipients[i], amounts[i]);

Recommendation

In 1MUSD , consider moving forceTransfer before forceTransfers .

Appendix 1- Files in Scope

This review covered the following files:

Initial version at revision b62fab7¢c3e867b700bd81dad2ab140e074d98f32:

File SHA-1 hash
src/IMUSD.sol 83cd624256e79a09e907d1e6950a3a189fade121
src/MUSD.sol adebf886b3e63586837b78847037b43d643ace19

Final version at revision b5594cd5c8a0b27534bf20f09ff08fd74bb18f7:

https://github.com/m0-foundation/mUSD/pull/15/commits/5131ea952adea0fa506a8e4d5ffe587142f27d7f
https://github.com/m0-foundation/mUSD/tree/b62fab7c3e867b700bd81dad2ab140e074d98f32
fhttps://github.com/m0-foundation/mUSD/tree/b5594cd5c8a0b27534bf20f09ff08fd74bb18f7f

File SHA-1 hash

src/IMUSD.sol 17f2a5d26814638b584dd985afe36edbf8cdc312

src/MUSD.sol 535981657d98a46681cc3403a9874d0b1e379546

Appendix 2 - Document Changelog

Version Date Description
1.0 2025-08-15 Initial report
2.0 2025-08-21 Reviewed fixes, added client comments, and extended “Executive Summary” and “Scope” sections accordingly

Appendix 3 - Disclosure

Consensys Diligence (“CD") typically receives compensation from one or more clients (the “Clients”) for performing the analysis contained in these reports (the
“Reports”). The Reports may be distributed through other means, including via Consensys publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the security of any particular project. This
Report does not consider, and should not be interpreted as considering or having any bearing on, the potential economics of a token, token sale or any other
product, service or other asset. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and uncertainty. No Report
provides any warranty or representation to any third party in any respect, including regarding the bug-free nature of code, the business model or proprietors of
any such business model, and the legal compliance of any such business. No third party should rely on the Reports in any way, including for the purpose of
making any decisions to buy or sell any token, product, service or other asset. Specifically, for the avoidance of doubt, this Report does not constitute investment
advice, is not intended to be relied upon as investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security
of the project. CD owes no duty to any third party by virtue of publishing these Reports.

A.3.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our review is limited to a review of
code and only the code we note as being within the scope of our review within this report. Any Solidity code itself presents unique and unquantifiable risks as the
Solidity language itself remains under development and is subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas
beyond specified code that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical risk and
uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making these analyses publicly available, it
can help the blockchain ecosystem develop technical best practices in this rapidly evolving area of innovation.

A.3.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD. Such hyperlinks are provided for
your reference and convenience only, and are the exclusive responsibility of such web sites’ owners. You agree that Consensys and CD are not responsible for the
content or operation of such Web sites, and that Consensys and CD shall have no liability to you or any other person or entity for the use of third party Web sites.
Except as described below, a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that Web
site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to
which you link from the Reports. Consensys and CD assumes no responsibility for the use of third-party software on the Web Site and shall have no liability
whatsoever to any person or entity for the accuracy or completeness of any outcome generated by such software.

A.3.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice unless indicated otherwise, by
Consensys and CD.

POWERED BY (consensys

https://consensys.io/

