
Linea - Burn Mechanism

Date October 2025

Auditors
Arturo Roura, Martin
Ortner

1 Executive Summary
This report presents the results of our engagement with Linea to review the new
Linea Revenue Profit Burn Mechanism.

The review was conducted from October 13, 2025 to October 20, 2025, with a total effort of 2 x 5 person-days.

The Linea Burn Mechanism consists of a three-contract system designed to facilitate the systematic burning of LINEA tokens as
part of Linea’s rollup revenue management strategy. This operational infrastructure enables the collection of rollup revenues,
conversion to LINEA tokens, and their subsequent destruction to reduce token supply.

The burn mechanism operates through a coordinated cross-chain workflow:

Revenue Collection through RollupRevenueVault which receives ETH from Linea rollup operations and processes invoices for
operational expenses

A Token Conversion where during burn operations, 20% of available ETH is permanently destroyed while the remaining 80%
is swapped for LINEA tokens via the V3DexSwap contract

Acquired LINEA tokens are bridged from L2 to L1 using Linea’s canonical token bridge to the L1LineaTokenBurner contract

The L1 burner contract processes cross-chain messages and permanently burns all received LINEA tokens, synchronizing the
reduced supply back to L2

Remarks on Validated Design Decissions:

In RollupRevenueVault there is only one active receiver at a time. The system does not support multiple simultaneous receivers, as
the debt system enforces a single counterparty. Operationally, this receiver is separate from the invoice submitter, who remains a
trusted role.

RollupRevenueVault can receive ETH through fallback() and receive() without requiring invoice submission. This ETH becomes
immediately available for burning if there are no outstanding arrears, which could bypass standard revenue accounting and
invoice workflows. These functions are primarily intended to accept ETH from contributors wishing to fund the burn. Off-chain
procedures and timing routines are carefully managed to ensure that invoices are settled first, allowing any excess ETH to be
safely burned.

Neither RollupRevenueVault nor V3DexSwap enforce slippage control by themselve, placing critical responsibility on the caller to
correctly parameterize burnAndBridge(bytes calldata _swapData) with appropriate slippage settings. The contracts trust the configured
DEX router to return at least the caller provided amountOutMinimum , there is no explicit verification. This may be valid, however, the
caller should consider implementing additional verification mechanisms to ensure swap outputs meet expected thresholds, as
incorrect parameterization could result in excessive slippage or MEV exploitation.

The RollupRevenueVault admin, overseen by a distributed security council including non-Linea and non-CSI members, can adjust
arrears via updateInvoiceArrears to correct reporting inaccuracies; this capability is tightly controlled and expected to be used only
in rare cases of major reporting errors.

Here’s a more concise and polished version suitable for an executive summary section of an audit report. It keeps all the
technical detail but presents it with clearer structure and formal tone:

1.1 Update – October 24 + 30, 2025

All issues identified in this report have been resolved. The final audited codebase is represented by commit
efe83ff992b38eda5fd5a58220acb6952c519f75 (tag: contract-audit-2025-10-30), which contains the verified deployment artifacts.

1.2 Update – November 2, 2025

At the request of the Linea team, the deployed contracts have been added and verified as follows.

Deployment Commit: linea-monorepo@ contract-audit-2025-10-30 (efe83ff992b38eda5fd5a58220acb6952c519f75)

The listed source files were recompiled from scratch, and the resulting bytecode was compared against the deployed contracts.
In cases where an exact match was not observed, the differences were confirmed to correspond to the expected constructor
parameters. The findings are as follows:

RollupRevenueVault@ 0x84a5ba2c12a15071660b0682b59e665dc2faaedb : Verified on lineascan.build (Nov 2, 2025, 15:45 CET). The
deployed bytecode is an exact match to the re-compiled code of contract-audit-2025-10-30@efe83ff and the bytecode artifacts
recorded under linea-monorepo:contracts/deployments/bytecode/2025-10-27 .

V3DexSwapAdapter@ 0x30a20a3a9991c939290f4329cb52daac8e97f353 : Verified on lineascan.build (Nov 2, 2025, 15:45 CET). The
deployed bytecode matches, with expected constructor argument substitutions. The re-compiled bytecode matches the
bytecode artifacts recorded under linea-monorepo:contracts/deployments/bytecode/2025-10-27 .

L1LineaTokenBurner@ 0x5Ad9369254F29b724d98F6ce98Cb7bAD729969F3 : Verified on lineascan.build (Nov 2, 2025, 15:45 CET). The
deployed bytecode matches, with expected constructor argument substitutions. The re-compiled bytecode matches the

1 Executive Summary

1.1 Update – October 24 + 30,
2025

1.2 Update – November 2, 2025

2 Scope

2.1 Objectives

3 System Overview

3.1 Rollup Revenue Vault
(Upgradable)

3.2 L1 Linea Token Burner (Non-
Upgradable)

3.3 V3 Dex Swap (L2, Non-
Upgradable)

4 Findings

4.1
18_deploy_RollupRevenueVault.ts
– Deployment Script Leaves
Contract Uninitialized; fallback

Does Not Enforce msg.value > 0

Major ✓ Fixed

4.2 RollupRevenueVault -
Deployment and Initialization
Flow Medium ✓ Fixed

4.3 RollupRevenueVault - Missing
Validation for Future
lastInvoiceDate Minor

✓ Fixed

4.4 RollupRevenueVault -
Consider Enforcement of
Minimum Swap Outputs ✓ Fixed

5 Document Change Log

Appendix 1 - Files in Scope

Appendix 2 - Disclosure

A.2.1 Purpose of Reports

A.2.2 Links to Other Web Sites
from This Web Site

A.2.3 Timeliness of Content

AUDITS FUZZING SCRIBBLE ABOUT

https://github.com/Consensys/linea-monorepo/commit/efe83ff992b38eda5fd5a58220acb6952c519f75
https://github.com/Consensys/linea-monorepo/tree/efe83ff992b38eda5fd5a58220acb6952c519f75/contracts
https://github.com/Consensys/linea-monorepo/tree/efe83ff992b38eda5fd5a58220acb6952c519f75/contracts
https://github.com/Consensys/linea-monorepo/tree/efe83ff992b38eda5fd5a58220acb6952c519f75/contracts
https://github.com/Consensys/linea-monorepo/tree/efe83ff992b38eda5fd5a58220acb6952c519f75/contracts
https://github.com/Consensys/linea-monorepo/tree/efe83ff992b38eda5fd5a58220acb6952c519f75/contracts
https://lineascan.build/address/0x84a5ba2c12a15071660b0682b59e665dc2faaedb#code
https://lineascan.build/address/0x84a5ba2c12a15071660b0682b59e665dc2faaedb#code
https://lineascan.build/address/0x84a5ba2c12a15071660b0682b59e665dc2faaedb#code
https://lineascan.build/address/0x30a20a3a9991c939290f4329cb52daac8e97f353#code
https://lineascan.build/address/0x30a20a3a9991c939290f4329cb52daac8e97f353#code
https://lineascan.build/address/0x30a20a3a9991c939290f4329cb52daac8e97f353#code
https://etherscan.io/address/0x5Ad9369254F29b724d98F6ce98Cb7bAD729969F3#code
https://etherscan.io/address/0x5Ad9369254F29b724d98F6ce98Cb7bAD729969F3#code
https://etherscan.io/address/0x5Ad9369254F29b724d98F6ce98Cb7bAD729969F3#code
https://consensys.io/
https://consensys.io/audits/
https://consensys.io/fuzzing/
https://consensys.io/scribble/
https://consensys.io/about/

bytecode artifacts recorded under linea-monorepo:contracts/deployments/bytecode/2025-10-27 .

The re-compiled bytecode for V3DexSwapWethDepositAdapter matches the bytecode artifacts recorded under
linea-monorepo:contracts/deployments/bytecode/2025-10-27 .

2 Scope
This review focused on the following repository and code revision:

Consensys/linea-monorepo @ contract-freeze-2025-10-12

The following files are in scope:

contracts/src/operational/
├── RollupRevenueVault.sol
├── V3DexSwap.sol
├── L1LineaTokenBurner.sol
└── interfaces/
 ├── IV3DexSwap.sol
 ├── IRollupRevenueVault.sol
 ├── ISwapRouterV3.sol
 ├── IL1LineaToken.sol
 ├── IL1LineaTokenBurner.sol
 └── IWETH9.sol

The detailed list of files in scope can be found in the Appendix.

2.1 Objectives

Together with the Linea Team, we identified the following priorities for this review:

1. Correctness of the implementation, consistent with the intended functionality and without unintended edge cases.

2. Identify known vulnerabilities particular to smart contract systems, as outlined in our Smart Contract Best Practices, and the
Smart Contract Weakness Classification Registry.

3. Proper Handling of Funds, fee collection, profit burning, and token swaps.

4. Swaps comply with industry standards via the defined Dex interface.

5. Documentation and Transparency, operations are clearly documented and understandable by stakeholders.

3 System Overview
Burn Mechanism

(This image was provided by the Linea Team)

Contract Overview

Linea L2

RollupRevenueVault

AccessControlUpgradeable

IRollupRevenueVault

__constr__

initialize

initializeRolesAndStorageVariables

💰 submitInvoice

burnAndBridge

updateInvoicePaymentReceiver

updateInvoiceArrears

updateL1LineaTokenBurner

updateDex

💰 __fallback__

💰 __receive__

initializer

reinitializer

onlyRole: INVOICE_SUBMITTER_ROLE

onlyRole: BURNER_ROLE

onlyRole: DEFAULT_ADMIN_ROLE

onlyRole: DEFAULT_ADMIN_ROLE

onlyRole: DEFAULT_ADMIN_ROLE

onlyRole: DEFAULT_ADMIN_ROLE

AccessControlUpgradeable

Initializable

ContextUpgradeable

IAccessControl

ERC165Upgradeable

🔍 supportsInterface

🔍 hasRole

🔍 getRoleAdmin

grantRole

revokeRole

renounceRole

onlyRole: roleAdmin

onlyRole: roleAdmin

ERC165Upgradeable

Initializable

IERC165

🔍 supportsInterface

V3DexSwap

IV3DexSwap

__constr__

💰 swap

Linea L1

L1LineaTokenBurner

IL1LineaTokenBurner

IGenericErrors

__constr__

claimMessageWithProofisNotclaimed

Burn LINEA

TokenBridge
L2 <-> L1 Sync L1 -> L2

totalSupply

3.1 Rollup Revenue Vault (Upgradable)

Handles Sequencer and L2 DDoS fee collection, invoice management, and profit burning.

Burns 20% as ETH and swaps 80% to Linea tokens, which are bridged to the L1 Token Burner.

Supports configuration changes (Dex swap address, invoice recipient, L1 Token Burner).

https://github.com/Consensys/linea-monorepo/tree/8285efababe0689aec5f0a21a28212d9d22df22e
https://github.com/Consensys/linea-monorepo/tree/8285efababe0689aec5f0a21a28212d9d22df22e
https://consensys.github.io/smart-contract-best-practices/
https://swcregistry.io/
https://consensys.io/audits/private/m7ufbraf9ilg8i/img/linea-token-burn-mechanism.png
https://consensys.io/audits/private/m7ufbraf9ilg8i/img/linea-token-burn-mechanism.png
https://consensys.io/audits/private/m7ufbraf9ilg8i/img/tm_linea_burn.svg
https://consensys.io/audits/private/m7ufbraf9ilg8i/img/tm_linea_burn.svg

Technical Details:

Upgradeable Contract: Uses OpenZeppelin’s AccessControlUpgradeable with reinitializer support (version 2)

Role-Based Access Control:
DEFAULT_ADMIN_ROLE : Can update system parameters (dex, invoice receiver, L1 burner, invoice arrears)

INVOICE_SUBMITTER_ROLE : Can submit and process invoices for operational expenses

BURNER_ROLE : Can execute the burn-and-bridge operations

Revenue Collection & Invoice Management:

Revenue Reception: Accepts ETH through receive() and fallback() functions, emitting EthReceived events

Invoice Processing: Strict sequential invoice system requiring _startTimestamp == lastInvoiceDate + 1

Arrears Handling: Automatically calculates and tracks unpaid amounts when contract balance is insufficient

Payment Priority: Invoice payments are processed before any burn operations (invoiceArrears == 0 requirement)

Burn-and-Bridge Mechanism:

Fixed Burn Ratio: Exactly 20% of available ETH (after message fees) is permanently destroyed via
address(0).call{value: ethToBurn}("")

DEX Integration: Remaining 80% is sent to the DEX contract via low-level call with encoded swap data

Token Bridging: Acquired LINEA tokens are approved and bridged to L1 using the canonical TokenBridge.bridgeToken() function

Balance Management: Reserves L2MessageService minimum fees before calculating burn amounts

Configuration Management:

Updateable Components: DEX address, invoice payment receiver, L1 token burner address, and invoice arrears

Validation: All updates include zero-address checks and existing-address-same prevention

3.2 L1 Linea Token Burner (Non-Upgradable)

Accepts token bridging messages and burns tokens in a single permissionless transaction.

Includes safeguards against front-running, duplicate claims, and zero-balance burns.

Technical Details:

Immutable Design: All addresses (LINEA_TOKEN , MESSAGE_SERVICE) are immutable, preventing configuration changes post-
deployment

Permissionless Operation: Anyone can call claimMessageWithProof() to trigger token burning

Message Claiming & Burning Process:

Idempotent Message Claiming: Checks IL1MessageManager.isMessageClaimed() before attempting to claim, preventing revert on
duplicate claims

Automatic Token Destruction: Burns entire contract balance in a single transaction using IL1LineaToken.burn(balance)

Supply Synchronization: Calls IL1LineaToken.syncTotalSupplyToL2() to update L2 total supply after burning

Zero-Balance Protection: Requires balance > 0 before executing burn operations

Front-Running & Duplicate Claim Safeguards:

Message Status Check: Prevents claiming already-processed messages

Balance Validation: Ensures tokens exist before burning

Atomic Operation: Combines message claiming and token burning in single transaction

3.3 V3 Dex Swap (L2, Non-Upgradable)

Executes exact-input token swaps, ensuring no residual ETH remains.

Token receiver is always the caller funding the swap.

Technical Details:

Immutable Configuration: Router, WETH, LINEA token addresses, and pool tick spacing are set at deployment

Uniswap V3 Integration: Uses ISwapRouterV3.exactInputSingle() for precise ETH-to-LINEA swaps

Swap Execution Details:

ETH Handling: Converts incoming ETH to WETH via IWETH9.deposit{value: msg.value}()

Exact Input Swaps: Guarantees all input ETH is consumed, leaving zero residual balance

Direct Token Delivery: LINEA tokens are sent directly to msg.sender (the caller), never held by the contract

Slippage Protection: Enforces minimum output amounts via amountOutMinimum parameter

Deadline Protection: Prevents transaction execution after specified timestamp

Parameter Validation:

Input Validation: Requires msg.value > 0 , _deadline > block.timestamp , and _minLineaOut > 0

Price Limit Control: Accepts _sqrtPriceLimitX96 for additional price protection

Return Value: Returns actual LINEA tokens received from the swap

4 Findings
Each issue has an assigned severity:

Critical issues are directly exploitable security vulnerabilities that need to be fixed.

Major issues are security vulnerabilities that may not be directly exploitable or may require certain conditions in order to be
exploited. All major issues should be addressed.

Medium issues are objective in nature but are not security vulnerabilities. These should be addressed unless there is a clear
reason not to.

Minor issues are subjective in nature. They are typically suggestions around best practices or readability. Code maintainers
should use their own judgment as to whether to address such issues.

Issues without a severity are general recommendations or optional improvements. They are not related to security or
correctness and may be addressed at the discretion of the maintainer.

4.1 18_deploy_RollupRevenueVault.ts – Deployment Script Leaves Contract Uninitialized;
fallback Does Not Enforce msg.value > 0 Major ✓ Fixed

Resolution

Fixed in commit 831c529479faebb380df1478e17f03bf0a3b9b80. The Linea team modified the deployment script to call the
initialize function with the proper signature and function arguments, and added require(msg.value > 0, NoEthSent()) in the
fallback.

Description

The deployment script for RollupRevenueVault incorrectly attempts to call a non-existent initialize() function with no parameters,
leaving the contract uninitialized and non-functional.

The script specifies EMPTY_INITIALIZE_SIGNATURE = "initialize()" , but the RollupRevenueVault contract only defines an initialize(addr, ...)

function that requires 10 parameters. When deployProxy (from OpenZeppelin) executes this empty initializer, the call is routed to
the contract’s fallback function instead of performing initialization.

As a result, the contract stays uninitialized allowing anyone to claim it.

Examples

Deployment Script calls empty initialize()

contracts/deploy/18_deploy_RollupRevenueVault.ts:L15-L17

const contractName = "RollupRevenueVault";
const existingContractAddress = await getDeployedContractAddress(contractName, deployments);

contracts/deploy/18_deploy_RollupRevenueVault.ts:L25-L28

const contract = await deployUpgradableFromFactory(contractName, [], {
 initializer: EMPTY_INITIALIZE_SIGNATURE,
 unsafeAllow: ["constructor"],
});

Contract only defines initialize(uint256,address,address,address,address,address,address,address,address,address)

Since no zero-argument initialize() exists, calls to initialize() without parameters trigger the fallback, contributing to hiding
this issue. Deployment returns success.

contracts/src/operational/RollupRevenueVault.sol:L58-L74

function initialize(
 uint256 _lastInvoiceDate,
 address _defaultAdmin,
 address _invoiceSubmitter,
 address _burner,
 address _invoicePaymentReceiver,
 address _tokenBridge,
 address _messageService,
 address _l1LineaTokenBurner,
 address _lineaToken,
 address _dex
) external initializer {
 __AccessControl_init();
 __RollupRevenueVault_init(
 _lastInvoiceDate,
 _defaultAdmin,
 _invoiceSubmitter,

contracts/src/operational/RollupRevenueVault.sol:L282-L288

/**
 * @notice Fallback function - Receives Funds.
 */
fallback() external payable {
 emit EthReceived(msg.value);
}

Recommendation

Remove the fallback function or require msg.value > 0 .

https://github.com/Consensys/linea-monorepo/pull/1599/commits/831c529479faebb380df1478e17f03bf0a3b9b80

Update the deployment script to call the correct initialize(addr, ...) function and supply all required parameters.

Bundle with a call to the reinitialize function to avoid another front-running window.

4.2 RollupRevenueVault - Deployment and Initialization Flow Medium ✓ Fixed

Resolution

Fixed in commit 831c529479faebb380df1478e17f03bf0a3b9b80. A new execution flow has been created for upgrading the
proxy where upgradeAndCall calls directly the initializeRolesAndStorageVariables function. This function has the reinitializer(2)

modifier, which after reinitialization would prevent any call to the initialize function.

Description

The contract implements two initialization functions:

initialize(addr, ...) initializer – for initial setup after proxy deployment.

initializeRolesAndStorageVariables(addr, ...) reinitializer(2) – available immediately after initialize has been called (Version 2 of
the contract).

Observations and Concerns

1) Deployment and Initialization Flow

When initialize functions are not permissioned, they must be called within the same transaction that deploys the proxy.
Otherwise, this creates a window of opportunity for an attacker to front-run initialization and gain control of the contract. With
certain proxy patterns (e.g., UUPS), this can even allow an attacker to upgrade the proxy immediately after initialization, enabling
arbitrary future initialization or upgrades. See a live example of such an attack.

In this case, the proxy pattern appears to be a minimal transparent proxy (not UUPS) with upgradeTo() onlyAdmin and
delegateCall(impl) branching. It is assumed proxies are deployed and initialized in the same transaction.

The RollupRevenueVault contract defines a reinitializer(2) function that becomes available immediately after the first initialization.
For a typical upgrade path of [deploy][initialize]-[reinitialize] this means, that after deployment or an upgrade, anyone could
potentially reinitialize the contract unless the upgrade transaction includes an atomic upgradeToAndCall(reinitializer_function) call.
Each upgrade therefore must include the reinitializer call in the same transaction to avoid leaving a reinitialization window open.

Originally, our concern was that the assumed deployment process (deploy → initialize → reinitialize) introduced gaps between
calls. However, the client has clarified that their deployment directly invokes reinitialize rather than performing a chained
initialization. This mitigates the initial frontrunning concern but does not eliminate it entirely - especially if future upgrades
expose the reinitializer(2) function in isolation or if initialization logic changes.

In the test suite, reinitialize is still observed being called in a separate transaction:

contracts/test/hardhat/operational/RollupRevenueVault.ts:L317-L330

it("Should revert when reinitializing twice", async () => {
 const txPromise = rollupRevenueVault.initializeRolesAndStorageVariables(
 await time.latest(),
 admin.address,
 invoiceSubmitter.address,
 burner.address,
 invoicePaymentReceiver.address,
 await tokenBridge.getAddress(),
 await messageService.getAddress(),
 l1LineaTokenBurner.address,
 await l2LineaToken.getAddress(),
 await dex.getAddress(),
);

If this pattern is replicated during upgrade execution, it reintroduces a short window of opportunity for attackers to front-run the
reinitialization and potentially claim ownership or modify key state.

Scenarios to consider:

(a) [deploy proxy] ----window of opportunity--- [initialize/reinitializer] → mitigated by deployAndInit

(b) [initialized contract] ----window of opportunity--- [reinitializer(2)] → must be mitigated by upgradeAndReInit (or
deployAndInit + upgradeAndReInit atomically for new deployments)

2) Cumulative Initialization for upgrades

Several issues arise from having both initializer and reinitializer(2) functions that perform overlapping logic when upgrading
the contract (instead of deploying from scratch and calling reinitializer). The following discussion points address the upgrade
path:

(a) Both functions initialize the same storage variables. For the upgrade scenario, this might lead to inconsistencies or
unnecessary state resets as crucial storage variables that should not be tampered with, could be reset.

contracts/src/operational/RollupRevenueVault.sol:L69-L71

) external initializer {
 __AccessControl_init();
 __RollupRevenueVault_init(

https://github.com/Consensys/linea-monorepo/pull/1599/commits/831c529479faebb380df1478e17f03bf0a3b9b80
https://x.com/pcaversaccio/status/1944115044154753161

contracts/src/operational/RollupRevenueVault.sol:L109-L111

) external reinitializer(2) {
 __AccessControl_init();
 __RollupRevenueVault_init(

For example, calling __RollupRevenueVault_init again allows resetting critical state variables such as lastInvoiceDate or the LINEA

token address. These values are intended to remain managed by the contract only. Allowing an upgrade to change them can
create inconsistencies or break accounting logic, especially when an upgrade accidentally wraps invoicer calls due to
unfortunate timing. A reinitialization routine should only adjust non-critical system parameters or perform narrowly scoped
updates. Any regular configuration changes should occur through explicit setter functions with 2-step governance (e.g., time
delays, multisig approvals, or controlled modules).

(b) Calling __AccessControl_init again is redundant. While this is effectively a no-op, it still creates confusion and weakens
clarity of upgrade semantics.

(c) Reinvoking __RollupRevenueVault_init with new role assignments adds new administrators via grant_role but does not revoke
existing ones. This can lead to privilege accumulation. If the intention is to rotate or replace admins, the logic should
explicitly revoke outdated roles before granting new ones.

contracts/src/operational/RollupRevenueVault.sol:L148-L150

_grantRole(DEFAULT_ADMIN_ROLE, _defaultAdmin);
_grantRole(INVOICE_SUBMITTER_ROLE, _invoiceSubmitter);
_grantRole(BURNER_ROLE, _burner);

Using the same initialization logic for fresh deployment and upgrades causes state reset, increasing potential for inconsistencies
or misparameterization of a running system, potential for overlooking that permission grants are additive for upgrades and
generally gives weaker guarantees. Ideally, the two scenarios should not reuse the same internal function - they serve different
purposes and should preserve vs. reset state accordingly.

Examples

Deployment as seen in the test cases performing an OZ deployAndInitialize correctly calling initialize() bundled to the
deployment call:

contracts/test/hardhat/operational/RollupRevenueVault.ts:L68-L87

describe("Initialization", () => {
 it("should revert if lastInvoiceDate is zero", async () => {
 const deployCall = deployUpgradableFromFactory(
 "RollupRevenueVault",
 [
 0n,
 admin.address,
 invoiceSubmitter.address,
 burner.address,
 invoicePaymentReceiver.address,
 await tokenBridge.getAddress(),
 await messageService.getAddress(),
 l1LineaTokenBurner.address,
 await l2LineaToken.getAddress(),
 await dex.getAddress(),
],
 {
 initializer: ROLLUP_REVENUE_VAULT_INITIALIZE_SIGNATURE,
 unsafeAllow: ["constructor"],
 },

initializer

contracts/src/operational/RollupRevenueVault.sol:L45-L83

https://github.com/OpenZeppelin/openzeppelin-contracts-upgradeable/blob/master/contracts/access/AccessControlUpgradeable.sol#L83-L87

/**
 * @notice Initializes the contract state.
 * @param _lastInvoiceDate Timestamp of the last invoice.
 * @param _defaultAdmin Address to be granted the default admin role.
 * @param _invoiceSubmitter Address to be granted the invoice submitter role.
 * @param _burner Address to be granted the burner role.
 * @param _invoicePaymentReceiver Address to receive invoice payments.
 * @param _tokenBridge Address of the token bridge contract.
 * @param _messageService Address of the L2 message service contract.
 * @param _l1LineaTokenBurner Address of the L1 LINEA token burner contract.
 * @param _lineaToken Address of the LINEA token contract.
 * @param _dex Address of the DEX contract.
 */
function initialize(
 uint256 _lastInvoiceDate,
 address _defaultAdmin,
 address _invoiceSubmitter,
 address _burner,
 address _invoicePaymentReceiver,
 address _tokenBridge,
 address _messageService,
 address _l1LineaTokenBurner,
 address _lineaToken,
 address _dex
) external initializer {
 __AccessControl_init();
 __RollupRevenueVault_init(
 _lastInvoiceDate,
 _defaultAdmin,
 _invoiceSubmitter,
 _burner,
 _invoicePaymentReceiver,
 _tokenBridge,
 _messageService,
 _l1LineaTokenBurner,
 _lineaToken,
 _dex
);
}

reinitializer(2)

contracts/src/operational/RollupRevenueVault.sol:L85-L123

/**
 * @notice Reinitializes the contract state for upgrade.
 * @param _lastInvoiceDate Timestamp of the last invoice.
 * @param _defaultAdmin Address to be granted the default admin role.
 * @param _invoiceSubmitter Address to be granted the invoice submitter role.
 * @param _burner Address to be granted the burner role.
 * @param _invoicePaymentReceiver Address to receive invoice payments.
 * @param _tokenBridge Address of the token bridge contract.
 * @param _messageService Address of the L2 message service contract.
 * @param _l1LineaTokenBurner Address of the L1 LINEA token burner contract.
 * @param _lineaToken Address of the LINEA token contract.
 * @param _dex Address of the DEX contract.
 */
function initializeRolesAndStorageVariables(
 uint256 _lastInvoiceDate,
 address _defaultAdmin,
 address _invoiceSubmitter,
 address _burner,
 address _invoicePaymentReceiver,
 address _tokenBridge,
 address _messageService,
 address _l1LineaTokenBurner,
 address _lineaToken,
 address _dex
) external reinitializer(2) {
 __AccessControl_init();
 __RollupRevenueVault_init(
 _lastInvoiceDate,
 _defaultAdmin,
 _invoiceSubmitter,
 _burner,
 _invoicePaymentReceiver,
 _tokenBridge,
 _messageService,
 _l1LineaTokenBurner,
 _lineaToken,
 _dex
);
}

contracts/src/operational/RollupRevenueVault.sol:L125-L160

function __RollupRevenueVault_init(
 uint256 _lastInvoiceDate,
 address _defaultAdmin,
 address _invoiceSubmitter,
 address _burner,
 address _invoicePaymentReceiver,
 address _tokenBridge,
 address _messageService,
 address _l1LineaTokenBurner,
 address _lineaToken,
 address _dex
) internal onlyInitializing {
 require(_lastInvoiceDate != 0, ZeroTimestampNotAllowed());
 require(_defaultAdmin != address(0), ZeroAddressNotAllowed());
 require(_invoiceSubmitter != address(0), ZeroAddressNotAllowed());
 require(_burner != address(0), ZeroAddressNotAllowed());
 require(_invoicePaymentReceiver != address(0), ZeroAddressNotAllowed());
 require(_tokenBridge != address(0), ZeroAddressNotAllowed());
 require(_messageService != address(0), ZeroAddressNotAllowed());
 require(_l1LineaTokenBurner != address(0), ZeroAddressNotAllowed());
 require(_lineaToken != address(0), ZeroAddressNotAllowed());
 require(_dex != address(0), ZeroAddressNotAllowed());

 _grantRole(DEFAULT_ADMIN_ROLE, _defaultAdmin);
 _grantRole(INVOICE_SUBMITTER_ROLE, _invoiceSubmitter);
 _grantRole(BURNER_ROLE, _burner);

 lastInvoiceDate = _lastInvoiceDate;

 invoicePaymentReceiver = _invoicePaymentReceiver;
 tokenBridge = TokenBridge(_tokenBridge);
 messageService = L2MessageService(_messageService);
 l1LineaTokenBurner = _l1LineaTokenBurner;
 lineaToken = _lineaToken;
 dex = _dex;
}

Recommendation

Consider removing the initialize() function from future contract versions to reduce confusion and prevent misuse.

Maintain clear, versioned contracts (RollupRevenueVaultV1 , RollupRevenueVaultV2 , etc.) to isolate initialization logic per version and
allow incremental upgrade initializations.

Ensure all future deployments and upgrades atomically execute upgradeToAndCall(reinitializer_function) to avoid reinitialization
race windows.

Restrict reinitialization logic for upgrades to non-critical variables only. Critical configuration values should be immutable or
changeable only through explicitly controlled governance mechanisms.

When role or permission updates are necessary, explicitly revoke outdated roles before granting new ones to avoid
unintended privilege escalation.

see issue 4.1 , fix the initialize call and remove the fallback function or require msg.value > 0

Consider renaming the reinitializer function as an initializeVx... to make it obvious, that this is an initialization funciton.

4.3 RollupRevenueVault - Missing Validation for Future lastInvoiceDate Minor ✓ Fixed

Resolution

Fixed in commit bd2f0b28f59601d40d4ab63243632ccc16d9cf8a. The Linea team added
require(_lastInvoiceDate < block.timestamp, TimestampInTheFutureNotAllowed()); on reinitialization, invoice submission and when

updating invoice arrears.

Description

The contract does not enforce validation to prevent lastInvoiceDate from being set to a future timestamp. This can permanently
block invoice submissions, affecting normal invoice operations, potentially resulting in a denial of service until manual
intervention occurs.

Examples

Several functions allow lastInvoiceDate to be set to future values without proper checks:

Invoice Submissions:

contracts/src/operational/RollupRevenueVault.sol:L162-L184

https://github.com/Consensys/linea-monorepo/pull/1600/commits/bd2f0b28f59601d40d4ab63243632ccc16d9cf8a

/**
 * @notice Submit invoice to pay to the designated receiver.
 * @param _startTimestamp Start of the period the invoice is covering.
 * @param _endTimestamp End of the period the invoice is covering.
 * @param _invoiceAmount New invoice amount.
 */
function submitInvoice(
 uint256 _startTimestamp,
 uint256 _endTimestamp,
 uint256 _invoiceAmount
) external payable onlyRole(INVOICE_SUBMITTER_ROLE) {
 require(_startTimestamp == lastInvoiceDate + 1, TimestampsNotInSequence());
 require(_endTimestamp > _startTimestamp, EndTimestampMustBeGreaterThanStartTimestamp());
 require(_invoiceAmount != 0, ZeroInvoiceAmount());

 address payable receiver = payable(invoicePaymentReceiver);
 uint256 balanceAvailable = address(this).balance;

 uint256 totalAmountOwing = invoiceArrears + _invoiceAmount;
 uint256 amountToPay = (balanceAvailable < totalAmountOwing) ? balanceAvailable : totalAmountOwing;

 invoiceArrears = totalAmountOwing - amountToPay;
 lastInvoiceDate = _endTimestamp;

If lastInvoiceDate is set to a future timestamp (e.g., year 2030), subsequent invoice submissions must have
_startTimestamp = lastInvoiceDate + 1 , effectively soft-locking the system until that future date is reached or forcing submissions to

shift in the future. Setting this to uint_MAX will permanently prevent submissions until an admin resolves it.

Initialization:

contracts/src/operational/RollupRevenueVault.sol:L125-L152

function __RollupRevenueVault_init(
 uint256 _lastInvoiceDate,
 address _defaultAdmin,
 address _invoiceSubmitter,
 address _burner,
 address _invoicePaymentReceiver,
 address _tokenBridge,
 address _messageService,
 address _l1LineaTokenBurner,
 address _lineaToken,
 address _dex
) internal onlyInitializing {
 require(_lastInvoiceDate != 0, ZeroTimestampNotAllowed());
 require(_defaultAdmin != address(0), ZeroAddressNotAllowed());
 require(_invoiceSubmitter != address(0), ZeroAddressNotAllowed());
 require(_burner != address(0), ZeroAddressNotAllowed());
 require(_invoicePaymentReceiver != address(0), ZeroAddressNotAllowed());
 require(_tokenBridge != address(0), ZeroAddressNotAllowed());
 require(_messageService != address(0), ZeroAddressNotAllowed());
 require(_l1LineaTokenBurner != address(0), ZeroAddressNotAllowed());
 require(_lineaToken != address(0), ZeroAddressNotAllowed());
 require(_dex != address(0), ZeroAddressNotAllowed());

 _grantRole(DEFAULT_ADMIN_ROLE, _defaultAdmin);
 _grantRole(INVOICE_SUBMITTER_ROLE, _invoiceSubmitter);
 _grantRole(BURNER_ROLE, _burner);

 lastInvoiceDate = _lastInvoiceDate;

Admin Updates:

contracts/src/operational/RollupRevenueVault.sol:L238-L252

/**
 * @notice Update the invoice arrears.
 * @param _newInvoiceArrears New invoice arrears value.
 * @param _lastInvoiceDate Timestamp of the last invoice.
 */
function updateInvoiceArrears(
 uint256 _newInvoiceArrears,
 uint256 _lastInvoiceDate
) external onlyRole(DEFAULT_ADMIN_ROLE) {
 require(_lastInvoiceDate >= lastInvoiceDate, InvoiceDateTooOld());

 invoiceArrears = _newInvoiceArrears;
 lastInvoiceDate = _lastInvoiceDate;
 emit InvoiceArrearsUpdated(_newInvoiceArrears, _lastInvoiceDate);
}

Setter: Note - This allows the admin to skip settling existing debt.

contracts/src/operational/RollupRevenueVault.sol:L238-L252

/**
 * @notice Update the invoice arrears.
 * @param _newInvoiceArrears New invoice arrears value.
 * @param _lastInvoiceDate Timestamp of the last invoice.
 */
function updateInvoiceArrears(
 uint256 _newInvoiceArrears,
 uint256 _lastInvoiceDate
) external onlyRole(DEFAULT_ADMIN_ROLE) {
 require(_lastInvoiceDate >= lastInvoiceDate, InvoiceDateTooOld());

 invoiceArrears = _newInvoiceArrears;
 lastInvoiceDate = _lastInvoiceDate;
 emit InvoiceArrearsUpdated(_newInvoiceArrears, _lastInvoiceDate);
}

Recommendation

Implement timestamp validation in all relevant functions to prevent future dates.

4.4 RollupRevenueVault - Consider Enforcement of Minimum Swap Outputs ✓ Fixed

Resolution

Fixed in commit ac30ec35287763697acb94f72fa3c630bee0b46a. Differential balance check added post swap in
RollupRevenueVault.sol

Description

The burnAndBridge function performs token swaps via a low-level call rather than through a dedicated adapter interface such as
IV3DexSwap . This design choice is intentional, allowing flexibility to switch or upgrade adapters (e.g., to a future V4 adapter)

without tightly coupling the logic to a specific implementation.

While this is not a direct security issue, it places the responsibility for enforcing correct parameterization, such as slippage limits
and output validation, entirely on the caller or the external job that initiates the burnAndBridge operation.

For example, the current V3DexSwap adapter trusts the configured router to correctly enforce the minLineaOut parameter, as it
primarily acts as a passthrough. The burnAndBridge function then uses whatever token amount is returned from the swap, without
performing any sanity checks on the received amount.

This design means that correctness and safety depend heavily on external configuration and on the adapter implementation,
rather than being verified within burnAndBridge itself. While the configured router may currently be immutable and trustworthy,
future adapters or router changes could increase operational risk if output validation or slippage enforcement are not
consistently implemented.

Recommendation

Confirm that the intended design is to retain the low-level swap call for adapter flexibility (as acknowledged by the client).

If the swap adapter or router configuration is expected to remain under full project control, the current approach is
acceptable. Make sure to review the dex adapter and the swapping code for sllippage control.

To further reduce operational risk and dependency on adapter correctness, consider implementing a sanity check on
minimum tokens out within burnAndBridge or within the controlled adapter (e.g., V3DexSwap). This would provide a secondary
safeguard and reduce the likelihood of misconfiguration or inconsistent slippage handling in future adapter versions.

5 Document Change Log
Version Date Description

1.0 2025-10-20 Initial report

1.1 2025-10-24 Update: Fix Review

1.2 2025-11-02 Update: Added Deployment Addresses

Appendix 1 - Files in Scope
This review covered the following files:

File SHA-1 hash

contracts/src/operational/L1LineaTokenBurner.sol 13ba3c7a17b3dd165ddc44c5ea0518b585a4b9a9

contracts/src/operational/RollupRevenueVault.sol 73d186a487f0ed4e89102dac999a185c5f427297

contracts/src/operational/V3DexSwap.sol 64a492bdfba3398d83c0210ad420d7c2019b035b

contracts/src/operational/interfaces/IL1LineaToken.sol 7a6a9498462ca2089f5eb108696bc479db0a5200

contracts/src/operational/interfaces/IL1LineaTokenBurner.sol 82ac876952128efa5eecc780672b60306103a9aa

contracts/src/operational/interfaces/ILineaSequencerUptimeFeed.sol d8080409e50b10b069babf68c9e6badd1de259df

contracts/src/operational/interfaces/IRollupRevenueVault.sol b22ab1656d3fa0967ef653f2ca902227e476f6ae

contracts/src/operational/interfaces/ISwapRouterV3.sol ffe6128110c7e64173ff4a03d97bb004a614a823

https://github.com/Consensys/linea-monorepo/pull/1601/commits/ac30ec35287763697acb94f72fa3c630bee0b46a

File SHA-1 hash

contracts/src/operational/interfaces/IV3DexSwap.sol e606937635ddc5875fb121acd9018e147e134a39

contracts/src/operational/interfaces/IWETH9.sol 866101d0f2d977bf909c1b6e35ab51e92bbe184a

Appendix 2 - Disclosure
Consensys Diligence (“CD”) typically receives compensation from one or more clients (the “Clients”) for performing the analysis
contained in these reports (the “Reports”). The Reports may be distributed through other means, including via Consensys
publications and other distributions.

The Reports are not an endorsement or indictment of any particular project or team, and the Reports do not guarantee the
security of any particular project. This Report does not consider, and should not be interpreted as considering or having any
bearing on, the potential economics of a token, token sale or any other product, service or other asset. Cryptographic tokens are
emergent technologies and carry with them high levels of technical risk and uncertainty. No Report provides any warranty or
representation to any third party in any respect, including regarding the bug-free nature of code, the business model or
proprietors of any such business model, and the legal compliance of any such business. No third party should rely on the Reports
in any way, including for the purpose of making any decisions to buy or sell any token, product, service or other asset.
Specifically, for the avoidance of doubt, this Report does not constitute investment advice, is not intended to be relied upon as
investment advice, is not an endorsement of this project or team, and it is not a guarantee as to the absolute security of the
project. CD owes no duty to any third party by virtue of publishing these Reports.

A.2.1 Purpose of Reports

The Reports and the analysis described therein are created solely for Clients and published with their consent. The scope of our
review is limited to a review of code and only the code we note as being within the scope of our review within this report. Any
Solidity code itself presents unique and unquantifiable risks as the Solidity language itself remains under development and is
subject to unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond specified code
that could present security risks. Cryptographic tokens are emergent technologies and carry with them high levels of technical
risk and uncertainty. In some instances, we may perform penetration testing or infrastructure assessments depending on the
scope of the particular engagement.

CD makes the Reports available to parties other than the Clients (i.e., “third parties”) on its website. CD hopes that by making
these analyses publicly available, it can help the blockchain ecosystem develop technical best practices in this rapidly evolving
area of innovation.

A.2.2 Links to Other Web Sites from This Web Site

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Consensys and CD.
Such hyperlinks are provided for your reference and convenience only, and are the exclusive responsibility of such web sites’
owners. You agree that Consensys and CD are not responsible for the content or operation of such Web sites, and that Consensys
and CD shall have no liability to you or any other person or entity for the use of third party Web sites. Except as described below,
a hyperlink from this web Site to another web site does not imply or mean that Consensys and CD endorses the content on that
Web site or the operator or operations of that site. You are solely responsible for determining the extent to which you may use
any content at any other web sites to which you link from the Reports. Consensys and CD assumes no responsibility for the use of
third-party software on the Web Site and shall have no liability whatsoever to any person or entity for the accuracy or
completeness of any outcome generated by such software.

A.2.3 Timeliness of Content

The content contained in the Reports is current as of the date appearing on the Report and is subject to change without notice
unless indicated otherwise, by Consensys and CD.

https://consensys.io/

